Answer:
A) Separating funnel method
B) Simple Distillation
C) Evaporation
D) Sublimation
E) It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
Explanation:
A)
B) Kerosene and petrol are both miscible liquids and the difference in their boiling point temperature is not more than 25°C. Thus, we make use of Simple distillation.
C) Can be separated by evaporation where the water is boiled and it evaporates and leaves the salt behind
D) To separate camphor from salt, we use sublimation so the camphor can change directly from solid to the gas state without passing through the liquid state.
E) Chromatography is used to separate components of a mixture.
It is based on the principle of separation whereby even though two substances are dissolved in the same solvent, their respective solubilities could be different. Thus, the component that has more solubility will rise fastest and will therefore get separated from the mixture.
What we are give: Concentration of base (CB) = 3.4 ×

Then convert all volume in ml to L.
Volume of base (VB) 25.0ml = 0.025L
Volume of acid (VA) 16.6ml = 0.0166L
Now that we have everything we use the formula CAVA=CBVB.
Make 'CA' the subject then solve.
CA=
Answer:
Entropy increases
Explanation:
Entropy (S) is a measure of the degree of disorder. For a given substance - say water - across phases the following is true ...
S(ice) < S(water) << S(steam)
For a chemical process, entropy changes can be related to increasing or decreasing molar volumes of gas from reactant side of equation to product side of equation. That is ...
if molar volumes of gas increase, then entropy increases, and
if molar volumes of gas decrease, then entropy decreases.
For the reaction 2KClO₃(s) => 2KCl(s) + 3O₂(g)
molar volumes of gas => 0Vm* 0Vm 3Vm
*molar volumes (Vm) apply only to gas phase substances. Solids and liquids do not have molar volume.
Since the reaction produces 3 molar volumes of O₂(g) product vs 0 molar volumes of reactant, then the reaction is showing an increase in molar volumes of gas phase substances and its entropy is therefore increasing.