Answer:
A
Explanation:
its a because that is the first thing you do
Answer:
This is because, Kelvins and Celcius degrees both agree at fixed points i.e; the lower fixed point and upper
Answer:
3,85 g of Fe
Explanation:
1- The first thing to do is calculate the molar mass of the Fe2O3 compound. With the help of a periodic table, the weights of the atoms are searched, and the sum is made:
Molar mass of Fe2O3 = (2 x mass of Fe) + (3 x mass of O) = 2 x 55.88 g + 3 x 15.99 g = 159.65 g / mol
Then, one mole of Fe2O3 has a mass of 159.65 grams.
2- Then, the relationship between the Fe2O3 that will react and the iron to be produced. With the previous calculation, we can say that with one mole of Fe2O3, two moles of Fe can be produced. Passing this relationship to the molar masses, it would be as follows:
1 mole of Fe2O3_____ 2 moles of Fe
159.65 g of Fe2O3_____ 111.76 g of Fe
3- Finally, the calculation of the mass that can be produced of Fe is made, starting from 5.50 g of Fe2O3
159.65 g of Fe2O3 _____ 111.76 g of Fe
5.50 g of Fe2O3 ______ X = 3.85 g of Fe
<em>Calculation: 5.50 g x 111.76 g / 159.65 g = 3.85 g
</em>
The answer is that 3.85 g of Fe can be produced when 5.50 g of Fe2O3 react
Answer:
pH = 12.33
Explanation:
Lets call HA = butanoic acid and A⁻ butanoic acid and its conjugate base butanoate respectively.
The titration reaction is
HA + KOH ---------------------------- A⁻ + H₂O + K⁺
number of moles of HA : 118.3 ml/1000ml/L x 0.3500 mol/L = 0.041 mol HA
number of moles of OH : 115.4 mL/1000ml/L x 0.400 mol/L = 0.046 mol A⁻
therefore the weak acid will be completely consumed and what we have is the unreacted strong base KOH which will drive the pH of the solution since the contribution of the conjugate base is negligible.
n unreacted KOH = 0.046 - 0.041 = 0.005 mol KOH
pOH = - log (KOH)
M KOH = 0.005 mol / (0.118.3 +0.1154)L = 0.0021 M
pOH = - log (0.0021) = 1.66
pH = 14 - 1.96 = 12.33
Note: It is a mistake to ask for the pH of the <u>acid solutio</u>n since as the above calculation shows we have a basic solution the moment all the acid has been consumed.