Answer:
f = 276.6 Hz
Explanation:
This musical instrument can be approximated to a tube system where each tube has one end open and the other closed.
In the closed part there is a node and in the open part a belly or antinode. Therefore the wavelength is
L = λ/ 4
speed is related to wavelength and frequency
v = λ f
λ = v / f
we substitute
L = v / 4f
f = v / 4L
the speed of sound at 20ºC is
v = 343 m / s
let's calculate
f =
f = 276.6 Hz
Answer:
Because it can easily resist air resistance.
Explanation:
Since air resistance is not negligible, the crumpled paper will reach the ground first because it can easily resist air resistance surrounding it compare to the un-crumpled one that will be influenced by the air thereby causing the un-crumpled paper to spend more time in the air
Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
The value of 'g' is not affected by rotation at any place on Earth.
The change in velocity is 10 mi/h (4.47 m/s)
Explanation:
The change in velocity of the motorcyclist is given by

where
v is the final velocity
u is the initial velocity
In this problem, we have
u = 0 (the motorbike starts from rest)
v = 10 mi/h
Therefore, the change in velocity is

And keeping in mind that
1 mile = 1609 m
1 h = 3600 s
We can convert it into m/s:

Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly