Answer:
L= 0.059 mH
Explanation:
Given that
R = 855 Ω and C = 6.25 μF
V= 84 V
Frequency
ω = 51900 1/s
We know that

L=Inductance
C=Capacitance
ω =angular Frequency
ω² L C =1
(51900)² x L x 6.25 x 10⁻⁶ = 1
L= 5.99 x 10⁻⁵ H
L= 0.059 mH
Answer:
10kg
Explanation:
Let PE=potential energy
PE=196J
g(gravitational force)=9.8m/s^2
h(change in height)=2m
m=?
PE=m*g*(change in h)
196=m*9.8*2
m=10kg
Answer:
d) I and III only.
Explanation:
Let be
and
the masses of the two laboratory carts and let suppose that
. The expressions for each kinetic energy are, respectively:
and
.
After some algebraic manipulation, the following relation is constructed:

Since
, then
. That is to say,
.
The expressions for each linear momentum are, respectively:
and 
Since
, then
. Which proves that statement I is true.
According to the Impulse Theorem, the impulse needed by cart I is greater than impulse needed by cart II, which proves that statement II is false.
According to the Work-Energy Theorem, both carts need the same amount of work to stop them. Which proves that statement III is true.
<u>Answer</u>:
D. Entropy is a measure of disorder or randomness
<u>Explanation</u>:
The answer is entropy. It is the method to measure any disorder or randomness of any system. Basically it is concept of physics and chemistry but can also be used in other subject matters as well. In formula terms, it is denoted by S and is measurement value is "Joule per kelvin". The values could be both positive and negative as well.
All the other options are incorrect as heat, energy and temperature are the different concepts of science which do not relates with any measurement.