1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
3 years ago
8

How does the direction of friction relate to the direction of motion

Physics
1 answer:
lesya692 [45]3 years ago
5 0
 <span>It reacts to the </span>motion<span>. If the mass hanging from the pulley was overwhelmingly heavier than the mass on the ramp, it'll obviously pull the ramp mass up and thus </span>friction<span> would be trying to oppose this and vice versa. </span>
You might be interested in
How can you make the moon go around in a bigger circle
zlopas [31]

You would have to give it more mechanical energy.

Like, strap a bunch of powerful rockets to one side of the moon, with all of them pointing in the direction that the moon is already moving in its orbit.  Then blast away.

NOTE:  There aren't enough rockets or rocket fuel on Earth to make a difference, even if you used ALL of them.  The mass of the moon is about

<em>73,476,730,900,000,000,000,000 kilograms</em>

(rounded to the nearest hundred trillion kilograms.)

That's a lot.

5 0
3 years ago
Read 2 more answers
A stockroom worker pushes a box with mass 11.2 kg on a horizontal surface with a constant speed of 3.30 m/s . The coefIficient o
Artemon [7]

Answer:

Explanation:

Mass =11.2kg

Constant velocity =3.3m/s

μk=0.25

Since the body is moving in constant velocity, then the acceleration is zero(0).

ΣF = Σ(ma)

The normal force acting on the body is upward and the weight is acting downward

Then ΣFy=0

Therefore, N=W

W=mg=11.2×9.8=109.76N

So, N=W=109.76N

Frictional force is given as

Fr=μkN

Fr=0.25×109.76

Fr=27.44N

Frictional force acting against the motion is 27.44N

Then the forward force moving the body forward

ΣF = Σ(ma)

Since a = 0

Then,

ΣF = 0

F-Fr=0

Then F=Fr

So the force moving the body forward is 27.44N

8 0
3 years ago
Four charges 7 × 10−9 C at (0 m, 0 m), −9 × 10−9 C at (3 m, 3 m), 7 × 10−9 C at (1 m, 3 m), and −8 × 10−9 C at (−3 m, 2 m), are
Ivanshal [37]

Answer:

Magnitude of the resulting force on the 7 nC charge at the origin:

Fn₁= 23.95*10⁻⁹ N

Explanation:

Look at the attached graphic:

Charges of positive signs exert repulsive forces on q₁ + and charges of negative signs exert attractive forces on q₁ +.

q₁ experiences three forces (F₂₁,F₃₁,F₄₁) and we calculate them with Coulomb's law:

F = (k*q₁*q)/(d)²

d_{12} = \sqrt{3^{2}+3^{2}  }  = \sqrt{18} m : distance from q₁ to q₂

(d₁₂)² = 18 m²

d_{13} =\sqrt{1^{2}+3^{2}  } = \sqrt{10} m  : distance from q₁ to q₃

(d₁₃)² = 10 m²

d_{14} =\sqrt{3^{2}+2^{2}  } = \sqrt{13} m  : distance from q₁ to q₄

(d₁₄)² = 13 m²

K=  8.98755 × 10⁹ N *m²/C²

q₁=  7*10⁻⁹C

k*q₁=8.98755*10⁹ *7*10⁻⁹= 62.9

F₂₁= (62.9)*(9* 10⁻⁹) /(18) = 31.45*10⁻⁹ C

F₃₁= (62.9)*(7* 10⁻⁹) /(10) = 44*10⁻⁹ C

F₄₁= (62.9)*(8* 10⁻⁹) /(13) = 38.7*10⁻⁹ C

x-y components of the net force on q₁ (Fn₁):

α= tan⁻¹(3/3)= 45°  ,  β= tan⁻¹(3/1)= 71.56° , θ= tan⁻¹(2/3)= 33.69°

Fn₁x = F₂₁x+ F₃₁x+F₄₁x

F₂₁x =+ F₂₁*cosα =+ (31.45*10⁻⁹)* (cos 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*cosβ = - ( 44*10⁻⁹)* (cos 71.56°) = -13.91 *10⁻⁹ N

F₄₁x= -F₄₁*cosθ = -(38.7*10⁻⁹)* (cos 33.69°) = -32.2*10⁻⁹ N

Fn₁x = (+22.24 - 13.91 - 32.2)*10⁻⁹ N

Fn₁x = -23.87 *10⁻⁹ N

Fn₁y = F₂₁y+ F₃₁y+F₄₁y

F₂₁x =+ F₂₁*sinα =+ (31.45*10⁻⁹)* (sin 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*sinβ = - ( 44*10⁻⁹)* (sin 71.56°) = -41.74 *10⁻⁹ N

F₄₁x= +F₄₁*sinθ = +(38.7*10⁻⁹)* (sin 33.69°) =+21.47*10⁻⁹ N

Fn₁y = (22.24 -41.74+21.47)*10⁻⁹ N  

Fn₁y = 1.97*10⁻⁹ N

Magnitude of the resulting force on the 7 nC charge at the origin (q₁):

F_{n1} =\sqrt{(Fn_{1x} )^{2}+(Fn_{1y} )^{2} }

F_{n1} =\sqrt{(23.87 )^{2}+(1.97 )^{2} }

Fn₁= 23.95*10⁻⁹ N

8 0
3 years ago
A coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged con
Tcecarenko [31]

Complete question:

A 50 m length of coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged conductor (with charge −8.5 µC and radius 9.249 mm).

Required:

What is the magnitude of the electric field halfway between the two cylindrical conductors? The Coulomb constant is 8.98755 × 10^9 N.m^2 . Assume the region between the conductors is air, and neglect end effects. Answer in units of V/m.

Answer:

The magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

Explanation:

Given;

charge of the coaxial capable, Q = 8.5 µC = 8.5  x 10⁻⁶ C

length of the conductor, L = 50 m

inner radius, r₁ = 1.304 mm

outer radius, r₂ = 9.249 mm

The magnitude of the electric field halfway between the two cylindrical conductors is given by;

E = \frac{\lambda}{2\pi \epsilon_o r} = \frac{Q}{2\pi \epsilon_o r L}

Where;

λ is linear charge density or charge per unit length

r is the distance halfway between the two cylindrical conductors

r = r_1 + \frac{1}{2}(r_2-r_1) \\\\r = 1.304 \ mm \ + \  \frac{1}{2}(9.249 \ mm-1.304 \ mm)\\\\r = 1.304 \ mm \ + \ 3.9725 \ mm\\\\r = 5.2765 \ mm

The magnitude of the electric field is now given as;

E = \frac{8.5*10^{-6}}{2\pi(8.85*10^{-12})(5.2765*10^{-3})(50)} \\\\E = 5.793*10^5 \ V/m

Therefore, the magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

5 0
3 years ago
How is a wavelength measured?
kenny6666 [7]
I believe the correct answer is A) From crest to crest.
~Silver
3 0
3 years ago
Read 2 more answers
Other questions:
  • Which statement correctly describes the motion on which an Earth time interval is based?
    9·1 answer
  • 49. In what direction does the force of friction act?
    10·1 answer
  • What career has to do with fossil fuels??
    11·1 answer
  • What is Ohm's Law, and how does it work in real life.
    11·1 answer
  • A car traveling 75 km/h slows down at a constant 0.50 m/s2 just by "letting up on the gas." calculate (a) the distance the car c
    11·1 answer
  • A 8.0 n force acts on a 0.70-kg object for 0.50 seconds. by how much does the object's momentum change (in kg-m/s)? (never inclu
    6·1 answer
  • HELPPPPP ASAPPP!!!!!!!
    9·1 answer
  • What<br>is the CGS and<br>SI unit of weight?​
    13·2 answers
  • A bus initially moving at 20 m/s with an acceleration of -4m/s² for 5
    6·1 answer
  • The amount of force applied to an object multiplied by time is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!