Answer:
the activation energy Ea = 179.176 kJ/mol
it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
Explanation:
From the given information



Thus; 
Because at 113.0°C; the rate is 7 time higher than at 100°C
Hence:

1.9459 = 



Ea = 179.176 kJ/mol
Thus; the activation energy Ea = 179.176 kJ/mol
b)
here;






where ;


Now;

t = 7.0245 mins
Therefore; it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
If a metal is less reactive than carbon, it can be extracted from its oxide by heating with carbon. The carbon displaces the metal from the compound, and removes the oxygen from the oxide. This leaves the metal.
Activation energy is the energy required by reactants to undergo chemical reaction and given products
Every reactant has some internal energy (sum of all kind of energy like kinetic energy, potential energy, mechanical energy, chemical energy etc). It needs some extra energy to undergo chemical reaction which is activation energy
All kinds of reaction whether exothermic or endothermic needs activation energy
Threshold energy = internal energy + activation energy
Answer: -
C. The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
The kinetic energy of gas molecules increase with the increase in the temperature of the gas. With the increase in kinetic energy, the gas molecules also move faster. Thus with the increase of temperature, the speed of the molecules increase.
Temperature of first hydrogen gas sample is 10 °C.
10 °C means 273+10 = 283 K
Thus first sample temperature = 283 K
The second sample temperature of the hydrogen gas is 350 K.
Thus the temperature is increased.
So both the kinetic energy and speed of molecules is more for the hydrogen gas sample at 350 K.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Hence the answer is C.