<span>47.88 g/mol is the awsner your welcome</span>
MH₂ = 2×mH = 2×1g = 2 g/mol
Answer:
The correct answer is 532 K
Explanation:
The Gay-Lussac law describes the behavior of a gas at constant volume, by changing the pressure or temperature. When is heated, the change in pressure of the gas is directly proportional to it absolute temperature (in Kelvin or K).
We have the following initial conditions:
P1= 71.8 kPa
T1= -104ºC +273 = 169 K
If the pressure increases until reaching 225.9 kPa (P2), we can calculate the final temperature of the gas (T2) by using the Gay-Lussac derived expression:
P1 x T2 = P2 x T1
⇒T2= (P2 x T1)/P1 = (225.9 kPa x 169 K)/71.8 kPa= 531.7 K ≅ 532 K
Answer:
Explanation:
Sound travels outwards from the source in all directions. So there you have it sound does travel faster in warm air BUT it may appear to travel farther in cold air. This is how that works……if the air close to the ground is colder than the air above it then sound waves travelling upwards will be bent downwards.
So it would be the complimentary base pairing, meaning that the codon must have been:
GAC
(Which is the codon for aspartic acid)