61mol * 4 = 244moles of P
Answer:
<h2>leaves,</h2>
Hope it helps....⋋✿ ⁰ o ⁰ ✿⋌(・o・)
By definition of noble gases, neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
<h3>Noble gases</h3>
Noble gases are not very reactive, that is, they practically do not form chemical compounds. This means that they do not react with other substances, nor do they even react between atoms of the same gas, as is the case with diatomic gases such as oxygen (O₂).
The chemical stability of the noble gases and therefore the absence of spontaneous evolution towards any other chemical form, implies that they are already in a state of maximum stability.
All chemical transformations involve valence electrons, they are involved in the process of covalent bond formation and the formation of ions. Therefore, the practically null reactivity of the noble gases is due to the fact that they have a complete valence shell, which gives them a low tendency to capture or release electrons.
Since the noble gases do not react with the other elements, they are also called inert gases.
<h3>Neon</h3>
Neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
Learn more about noble gases:
brainly.com/question/8361108
brainly.com/question/11960526
brainly.com/question/19024000
<span>Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be.
Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.</span>