Answer:
1
Explanation:
For non metals to attain a noble gas configuration, they gain the number of electrons needed to attain the noble gas configuration of the noble gas at the end of their periods. This means that these non metals would only take up the configuration of the last element on their periods which of course is always a noble gas.
The last element on the hydrogen period or more conservatively the only other element on the hydrogen period is helium, with an atomic number of 2. The atomic number is the number of protons in he nucleus of an atom. For an electrically neutral atom, the number of electrons equal the number of protons.
Hence we can deduce that helium has 2 electrons while hydrogen has one electron. Thus for it to attain the configuration of helium, it just needs to gain one more electron
Answer:
The reaction is B. Synthesis
Explanation:
In the case of this reaction, it corresponds to a synthesis where 2 compounds (calcium oxide and water) are combined to form a new one (calcium hydroxide).
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.
If, in a peptide chain, there were 85 amino acids each joined by peptide bonds, there would only be 1 N-terminus group that would be present. The N-terminus group is always the start of the chain of a amino acid chain or a protein or a polypeptide. It refers to the free amine group present that is located at the end part of the chain. So, that no matter how many amino acids in a chain there would always be only one N-terminus group.
Answer:
The average atomic mass of boron is found to be
10.80
Explanation:
also u answered it urself