Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
Id say d because it releases hydrogen and on the other hand a base receives it
<span />
If the net force on a block is zero, the block will move at constant velocity
Explanation:
We can answer this question by applying Newton's second law of motion, which states that the net force on an object is equal to the product between its mass and its acceleration:
(1)
where
is the net force on the object
m is its mass
a is its acceleration
In this problem, we have a block, and the net force on it is zero:

According to eq.(1), this also implies that

So, the acceleration of the block is zero.
However, acceleration is the rate of change of velocity of a body:

where
is the change in velocity in a time of
. Since the acceleration is zero, this means that
, and therefore the velocity of the object is constant.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Range of a projectile motion is given by
R = v cos θ / g (v sin θ + sqrt(v^2 sin^2 θ + 2gy_0)); where R = 188m, θ = 41°, g = 9.8m/s^2, y_0 = 0.9
188 = v cos 41° / 9.8 (v sin 41° + sqrt(v^2 sin^2 41° + 2 x 9.8 x 0.9)) = 0.07701(0.6561v + sqrt(0.4304 v^2 + 17.64)) = 0.05053v + 0.07701sqrt(0.4304v^2 + 17.64)
0.07701sqrt(0.4304v^2 + 17.64) = 188 - 0.05053v
0.005931(0.4304v^2 + 17.64) = 35344 - 19v + 0.002553v^2
0.002553v^2 + 0.1046 = 35344 - 19v + 0.002553v^2
19v = 35344 - 0.1046 = 35343.8954
v = 35343.8954/19 = 1860 m/s
Answer:
This type of heat transfer occurs inside materials, typically solid materials. The heat from the fire is passed from molecule to molecule along the length of the material. The fire will generally follow the heat or sometimes the heat from conduction may cause a new fire to ignite elsewhere. The conduction is happening in the walls of the fireplace
Explanation:
SKATE OR DIE> LOSER