Answer:
Step-by-step explanation:
A circle is inscribed in an equilateral triangle PQR with centre O. If angle OQR = 30°, what is the perimeter of the triangle?
This is a circle inscribed in an equilateral triangle with side s.
If you are asking for the perimeter of PQR, it is 3s.
If you are asking for the perimeter of OQR, it is (3+23–√3)s
Since OR and SR are the hypotenuses of right triangles with adjacent side equal to ½ s, their length is ½s / cos 30° = (√3) /3.
(3/3)s + ((√3) /3)s + ((√3) /3)s = ((3 + 2√3)/3)s ≈ 2.1547s
Hope it helps
help me by marking as brainliest....
You need to explain to us what to do or else nobody will understand what your trying to ask for.
Answer:

Step-by-step explanation:
Given

Required
Find the slope

Subtract 2 from both sides


Open bracket


Take LCM



An equation has the form:

Where

By comparing:
and 

<em>So, the slope is 1/4</em>
Answer:
isometry
Step-by-step explanation:
Answer:
greatest common factor is 12xy² .
Step-by-step explanation: