Vegetables has moisture and during rise in the temperature the gas sealed and generated from moisture expands. Gas when heated or experience rise in temperature expands.
This question involves the concepts of the law of conservation of energy and kinetic energy.
The girl's fastest speed is "3.7 m/s".
According to the law of conservation of energy, the girl will have the fastest speed at mean position, which will be calculated as follows:
Loss in Potential Energy = Gain in Kinetic Energy

where,
v = maximum speed = ?
g = acceleration due to gravity = 9.81 m/s²
Δh = change in height = 1.3 m - 0.6 m = 0.7 m
Therefore,

<u>v = 3.7 m/s</u>
<u></u>
Learn more about the Law of Conservation of Energy here:
brainly.com/question/381281?referrer=searchResults
Answer:
Using the new cylinder the heat rate between the reservoirs would be 50 W
Explanation:
- Conduction could be described by the Law of Fourierin the form:
where
is the rate of heat transferred by conduction,
is the thermal conductivity of the material,
and
are the temperatures of each heat deposit,
is the cross area to the flow of heat, and
is the distance that the flow of heat has to go. - For the original cylinder the Fourier's law would be:
, and if
, then the expression would be:
where
is the diameter of the original cylinder, and
is the length of the original cylinder. - For the new cylinder, in the same fashion that for the first, Fourier's Law would be:
,where
is the heat rate in the second case,
and
are the new diameter and length. - But,
and
, substituting in the expression for
:
. - Rearranging:
. - In the last declaration of
, it could be noted that the expressión inside the parenthesis is actually
, then:
. - <u>It should be noted, that the temperatures in the hot and cold reservoirs never change.</u>
Converting minutes to seconds
1 minute = 60 seconds
5 minutes = 5 x 60 = 300 seconds.
distance
Time = - - - - - - - -
speed
Distance = time x speed = 300 x 3.5 = 1050 meters.
The car traveled 1050 meters.
Answer:
a) force between them is attraction, b) F = 1.125 10⁻² N
Explanation:
In this case the electric force is given by Coulomb's law
F =
In the exercise they give us the values of the loads
q1 = - 10 mC = -10 10⁻³ C
q2 = 5 mC = 5 10⁻³ C
d = 20 cm = 0.20 m
let's calculate
F = 9 10⁹
F = 1.125 10⁻² N
To find the direction of the force we use that charges of the same sign repel each other, as in this case there is a positive and a negative charge, the force between them is attraction