Answer: q2 = -0.05286
Explanation:
Given that
Charge q1 = - 0.00325C
Electric force F = 48900N
The electric field strength experienced by the charge will be force per unit charge. That is
E = F/q
Substitute F and q into the formula
E = 48900/0.00325
E = 15046153.85 N/C
The value of the repelled second charge will be achieved by using the formula
E = kq/d^2
Where the value of constant
k = 8.99×10^9Nm^2/C^2
d = 5.62m
Substitutes E, d and k into the formula
15046153.85 = 8.99×10^9q/5.62^2
15046153.85 = 284634186.5q
Make q the subject of formula
q2 = 15046153.85/ 28463416.5
q2 = 0.05286
Since they repelled each other, q2 will be negative. Therefore,
q2 = -0.05286
Answer:
C. 441 N
Explanation:
Gravitational force between two objects can by calculated by the formula
= G m₁m₂ / r² , m₁ and m₂ are masses at distance r
= ( 6.67 x 10⁻¹¹ x 45 x 5.98 x 10²⁴) / ( 6.38 x 10⁶ )²
= 44.09 x 10
= 440.9 N
= 441 N .
<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
0.00032cm*4.02=1.2864 × 10^-3 in scientific notation.