Answer:
a = 2 m/s^2
which agrees with the third answer option provided.
Explanation:
Recall the kinematic formula for displacement under the action of a constant acceleration "a":
yf - yi = 1/2 a t^2
using the information provided this equation becomes:
9 = 1/2 a (3)^2
solve for a:
9 * 2 / 9 = a
then a = 2 m/s^2
which agrees with the third answer option provided.
The moon is talking to thecat at night that’s why
Answer:
1) Addition of a catalyst
2) To change the reaction rate of slope B to look like slope A, simply add a catalyst to speed up the rate of reaction, giving you a higher amount of products in a shorter amount of time (line A)
Explanation:
1 and 2)Two things can alter the rate of a reaction, either the addition of a catylist which will not alter the composition of the products or reactants, but will accelerate the reaction time, or an increase in temperature will also increase the rate at which a reaction will occur.
You could choose temperature also and have the same result, it's your choice both are correct, but catalyst is the easiest.
Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2