Answer:
oof
Explanation:
I don't know but please don't report me
I am trying to do a challenge
Thank you-
If you don't report me!
Answer:
Final Volume of the gas = 0.1 m^3
Explanation:
Check the attached file for the calculations involved in this solution
Answer: c.An accumulator is not used in a system with a receiver/dryer
Explanation:
In a refrigeration system, a condenser is used to transfer heat and this occurs from the refrigerant to the air or water.
Then, the refrigerant then condenses to liquid when the hear has been transferred.
We should note that the condenser is normally mounted in front of the radiator. The receiver/dryer is a storage tank for the liquid refrigerant from the condenser.
The statement that an accumulator is not used in a system with a receiver/dryer is not true. This is because, the accumulator gives protection to the compressor which helps to prevent the failure of the compressor.
Therefore, the answer is C.
A well arranged floor plan is one that optimises the given floor area. Floor plans are useful to help design furniture layout, wiring systems, and much more. Option B is the answer, since it does not meet the standard of a plan
<h3>What is a Floor Plan?</h3>
A floor plan is a scaled diagram of a room or building viewed from above. The floor plan may depict an entire building, one floor of a building, or a single room. It may also include measurements, furniture, appliances, or anything else necessary to the purpose of the plan.
<h3>Other properties of a floor plan are:</h3>
- Maximize the property
- Utilize space effectively
- Accessibility
- Flexibility
- Functionality
- Maximize the use of light
- Attention to size
- Fitting to your lifestyle
Learn more:
brainly.com/question/25057316
Answer:
D) 1.04 Btu/s from the liquid to the surroundings.
Explanation:
Given that:
flow rate (m) = 2 lb/s
liquid specific enthalpy at the inlet (
Btu/lb)
liquid specific enthalpy at the exit (
Btu/lb)
initial elevation (
)
final elevation (
)
acceleration due to gravity (g) = 32.174 ft/s²
= 3 Btu/s
The energy balance equation is given as:
![Q_{cv}-W{cv}+m[(h_1-h_2)+(\frac{V_1^2-V_2^2}{2})+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2B%28%5Cfrac%7BV_1%5E2-V_2%5E2%7D%7B2%7D%29%2Bg%28z_1-z_2%29%5D%3D0)
Since kinetic energy effects are negligible, the equation becomes:
![Q_{cv}-W{cv}+m[(h_1-h_2)+g(z_1-z_2)]=0](https://tex.z-dn.net/?f=Q_%7Bcv%7D-W%7Bcv%7D%2Bm%5B%28h_1-h_2%29%2Bg%28z_1-z_2%29%5D%3D0)
Substituting values:
![Q_{cv}-(-3)+2[(40.09-40.94)+\frac{32.174(0-100)}{778*32.174} ]=0\\Q_{cv}+3+2[-0.85-0.1285 ]=0\\Q_{cv}+3+2(-0.9785)=0\\Q_{cv}+3-1.957=0\\Q_{cv}+1.04=0\\Q_{cv}=-1.04\\](https://tex.z-dn.net/?f=Q_%7Bcv%7D-%28-3%29%2B2%5B%2840.09-40.94%29%2B%5Cfrac%7B32.174%280-100%29%7D%7B778%2A32.174%7D%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%5B-0.85-0.1285%20%5D%3D0%5C%5CQ_%7Bcv%7D%2B3%2B2%28-0.9785%29%3D0%5C%5CQ_%7Bcv%7D%2B3-1.957%3D0%5C%5CQ_%7Bcv%7D%2B1.04%3D0%5C%5CQ_%7Bcv%7D%3D-1.04%5C%5C)
The heat transfer rate is 1.04 Btu/s from the liquid to the surroundings.