Answer:
400 milli-rems
Solution:
As per the question;
Maximum energy of particle, 
Weight, w = 1 kg
Energy absorbed, E = 
Now,
Equivalent dose is given by:

1 Gy = 1 J/kg
Also,
1 Gy = 
Therefore,
Dose equivalent in milli-rems is given by:

Change in velocity divided by time
So to work out the Δvelocity you do final speed- initial speed
This will give you a negative value as deceleration is the same as the minus value of acceleration
Answer:
The strength of the magnetic field is
.
Explanation:
Given that,
Length of the rod, L = 1.01 m
Speed with which the rod is moving, v = 3.47 m/s
We need to find the strength of the magnetic field that is perpendicular to both the rod and your direction of motion and that induces an EMF of 0.265 mV across the rod. When the rod is moving with some speed, an emf gets induced and it is given by :

B is magnetic field

So, the strength of the magnetic field is
.
Explanation:
It is given that,
Mass of the ball, m = 0.06 kg
Initial speed of the ball, u = 56 m/s
Final speed of the ball, v = -34.5 m/s (opposite direction)
(a) Let J is the impulse delivered to the ball by the racquet. It is equal to the change in momentum of the object as :


J = -5.43 kg-m/s
(b) The work done by the racquet on thee ball is equal to the change in kinetic energy as :


W = -58.372 Joules
Answer:
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities.