Answer:
see below
Explanation:
First: Leave a couple inches of wire loose at one end and wrap most of the rest of the wire around iron u-shaped bar and make sure not to overlap the wires.
Second:Cut the wire (if needed) so that there is about a couple inches loose at the other end too.
Third: Now remove about an inch of the plastic coating from both ends of the wire and connect the one wire to one end of a battery and the other wire to the other end of the battery.
<span>The Gravitational Force of an object is a measure of the amount of matter it contains. on the other hand __Matter__ is a measure of the gravitational force on an object. I hope it helps :)</span>
electromagnetic spectrum is consisting of many frequency range which is from gamma rays to radio waves
they are of various wavelength and different energy levels
minimum wavelength will occurs at Gamma rays
and maximum wavelength at Radio waves
the list of increasing order of wavelength is as following
Gamma rays < X rays < Ultraviolet < Visible Light < Infrared Waves < Radio Waves
so least to maximum order is
1. Gamma rays
2. X rays
3 Ultraviolet
4 Visible light
5 Infrared waves
6 Radio waves
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 
