<u>Answer:</u>
<em>Instantaneous velocity is equal to speed of the object at that particular instant.</em>
<u>Explanation:</u>
Instantaneous velocity is the velocity of the object at that particular instant. It is also equal to speed of the object at that instant. It can be calculated by drawing a tangent to the position-time graph at that point and finding the tangent’s slope.
The first option ‘The ratio of change in position to the time interval during that change’ gives the average velocity of an object and not speed. Similarly the second option ‘the absolute value of the slope of position time graph’ gives the average speed.
Answer:
Explanation:
The sum of the pore along the plane is expressed according to Newton's law
Fn-Ff = ma
Fn is the moving force
Ff = nR = frictional force
m is the Mass
a is the acceleration
Substitute the given values
Fn - nR = ma
Fn - tan31°(mgcostheta) =3.9(9.8)
Fn - tan31(3.9(9.8)cos31) = 3.9(9.8)
Fn - tan31(38.22cos31)= 38.22
Fn - 32.76tan31 = 38.22
Fn-19.68 = 38.22
Fn = 38.22+19.68.
Fn = 57.90N
Hence Fn (moving force) of the inclined block is 57.90
C it reduces the amount of useful work done on objects move it up the ramp
Answer:
Constant speed: yes
Constant velocity: no
Explanation:
Let's remind the definition of speed and velocity:
- Speed is a scalar quantity, which is equal to the ratio between the distance covered (regardless of the direction) and the time taken:

- Velocity is a vector quantity, so it has both a magnitude and a direction. The magnitude is equal to the rate between the displacement of the object and the time taken, while the direction is the same as the displacement.
In this problem, we notice that:
- The speed of the car remains constant, as it is 90 km/h
- However, its direction of motion changes while the car travels round the corner: this means that the direction of the velocity is also changing, therefore velocity is not constant.