Answer:
The answer is C "think about the problem first, systematically consider all factors, and form a hypothesis"
Explanation:
In physics there is some basic fomula that sir Isacc Newton proposed under the topic of motion. The three formulas are below;
<em>1) v=u+at</em>
<em>2)v^2=u^2+2as</em>
<em>3)s=ut+(1/2)(at^2)</em>
the variables are explained below;
u= initial velocity of the body
a=acceleration/Speed of the body
t= time taken by the body while travelling
s= displacement of the body.
Therefore to solve keatons problem, the factors(variables) in the formulas above need to be systematically considered. Since the ball was dropped from the top of the building, the initial velocity is 0 because the body was at rest. Also the acceleration will be acceleration due to gravity (9.8m/s^2)
Answer:
The spring stretched by x = 13.7 cm
Explanation:
Given data
Mass = 3 kg
k = 120 
Angle
= 34°
From the free body diagram
Force acting on the box = mg sin
⇒ F = 3 × 9.81 × 
⇒ F = 16.45 N ------- (1)
Since box is attached with the spring so a spring force also acts on the box.
= k x
= 120
-------- (2)
The net force acting on the body is given by
Since acceleration of the box is zero so



Put the values from equation (1) & (2) we get
16.45 = 120
x = 0.137 m
x = 13.7 cm
Therefore the spring stretched by x = 13.7 cm
Answer:
1- The acceleration of the object is larger in magnitude the smaller the radius of the circle.
Explanation:
The acceleration of an object in a circular path is

As can be seen from the equation, if the radius of the circle is decreases, the magnitude of the acceleration increases.
As for the direction of the acceleration, it is always towards the center, and it is always perpendicular to the direction of the velocity.
Answer:
Newton's law of gravitation, statement that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.