Just multiply the "1.0 m/s" by ' 1 ' a few times. (Remember that a fraction with the same quantity on top and bottom is equal to ' 1 ' .)
(1.0 m/sec) · (1 km/1000 m) · (60 sec/min) · (60 min/hr) =
(1.0 · 60 · 60 / 1,000) (m · km · sec · min / sec · m · min · hr) =
(3,600 / 1,000) (km / hr) =
3.6 km/hr .
Yes spoon can sound like a bell. To prove this, we perform an experiment.The handle of the spoon is tied at the mid point of the string, then wrap the ends of the string around pointer fingers. Now place fingers in ears. Lean over so that spoon hangs freely and swing the spoon so it taps against a door.
A sound is produced because the spoon vibrated, causing sound waves to travel up the string and into ears.
Answer:
The correct option is;
B. 8 m, because he has to apply less force over a greater distance
Explanation:
In the given question, in order for the student to lift the boxes onto the tuck with less amount of force, he applies the principle of Mechanical Advantage
The mechanical advantage is given by the measure by which a force is amplified through the use of a tool
Given that the work done = The force × The distance, we have
F₁ × d₁ = F₂ × d₂, which gives;
d₁/d₂ = F₂/F₁
Where;
F₁ = The input force
F₂ = The output force
d₁ = The input distance
d₂ = The output distance
The Mechanical advantage, MA = d₁/d₂ = F₂/F₁
Therefore, when the input distance is increased the input force will be reduced for a given output force
Answer:
Option D) -0.0707
Explanation:
We are given the following in the question:
Population mean, μ = 45 mp
Sample mean,
= 44.9
Sample size, n = 50
Sample standard deviation, s = 10
Formula:
Putting all the values, we have
Thus, the test statistic is
Option D) -0.0707
Answer:
10
Explanation:
(r) = <10 cos 6t, 10 Sin 6t>
The distance traveled by the object is the magnitude of vector r.
The magnitude of vector r is given by


r = 10