Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.
With time, momentum increases as it builds speed assuming their is nothing in the way to stop it. Based on the graph, you can see that example being displayed as the line on the graph gets higher
Answer:
8 x 10⁻⁷ x I / r
Explanation:
Two parallel long wires are carrying current I . Let the direction be towards the right in the farthest and towards the left in the nearest. Magnetic field due to current I at a distance d is given by the expression
B = μ₀ 2 I / 4π d
I the present case distance d = r/2
Magnetic field due to one wire at point d = r/2 is
B₁ = μ₀ 2 I / (4π r / 2 )
= 10⁻⁷ x 4I / r
Magnetic field due to the other wire at point d = r/2 is
B₂ = μ₀ 2 I / (4π r / 2 )
= 10⁻⁷ x 4I / r
Direction of magnetic field due to both the wires at the mid point P will be same . It will be in downward direction in the given scenario
So total magnetic field
B = B₁ + B₂
= 2 x 10⁻⁷ x 4I / r
= 8 x 10⁻⁷ x I / r
We use the law of Cosines, resultant force

Here,
and
are forces acting at angle
with each other.
Given
,
and
.
Substituting these given values in above formula we get
.
Thus, the resultant force is 156 N.