Answer:
12.7 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 56.7 Km/hr
Maximum height (h) =..?
First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:
Initial velocity (m/s) = 56.7 x 1000/3600
Initial velocity (m/s) = 15.75 m/s
Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:
Initial velocity (u) = 15.75 m/s
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
v = u – gt (since the ball is going against gravity)
0 = 15.75 – 9.8 × t
Rearrange
9.8 × t = 15.75
Divide both side by 9.8
t = 15.75/9.8
t = 1.61 secs.
Finally, we shall determine the maximum height as follow
h = ½gt²
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 1.61 secs.
Height (h) =..?
h = ½gt²
h = ½ × 9.8 × 1.61²
h = 4.9 x 1.61²
h = 12.7 m
Therefore, the maximum height reached by the ball is 12.7 m
<span> The farther away a galaxy is, the more its light
is shifted toward the red end of the spectrum. (C)</span>
Kinetic energy is motion of waves, electrons, atoms, molecules, substances, and objects. Potential energy is stored energy and the energy of position gravitational energy. There are several forms of potential energy. Electrical Energy is the movement of electrical charges.
I hope this helps you.
Answer:
A convex mirror is a diverging mirror (f is negative) and forms only one type of image. It is a case 3 image—one that is upright and smaller than the object, just as for diverging lenses.
Explanation:
hope this helps have a good night :)