Answer:
Since in summer, the eastern side do not face the sunlight and hence the water in eastern pot remain cool in summer.
Answer:
the final kinetic energy is 0.9eV
Explanation:
To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is
![E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV](https://tex.z-dn.net/?f=E_%7Bn_2-n_1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7Bn_2%5E2%7D-%5Cfrac%7B1%7D%7Bn_1%5E2%7D%5D%5C%5C%5C%5CE_%7B2-1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B1%7D%5D%3D-10.2eV)
-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:

Answer:
458.33 ft
Explanation:
We are given that
Wavelength of of an x- ray photon=1 in
Wavelength of of an x- ray photon==
ft
1 in=
feet
We have to find the length of line (in feet) drawn by you to represent the wavelength of visible light.
According to question
Wavelength of visible light=
ft
Wavelength of visible light
ft
Wavelength of visible light=458.33 ft
Hence, the 458.33 ft line must drawn by you to represent the wavelength of visible light.
Answer:
true
Explanation:
a body can only be accelerating and have speed if it's in motion