Answer:
the observed frequency will reduce but the wavelength will increase
Explanation:
As we know
fo = fs (v/(v-vs))
fo = observed frequency
vs = velocity of source
As per this equation,
When an observer moves away from the stationary source, the observed frequency reduces. Since the observer in the balloon is moving away from the source which itself is moving in opposite direction, the observed frequency will reduce.
Since wavelength = V/fs . The source frequency is unchanged but the velocity is increasing as it is moving in downward direction. Hence, the wavelength will increase
When an object is acted on by an unbalanced force, then that object will accelerate.
Answer:
Option C is the correct answer.
Explanation:
Considering vertical motion of ball:-
Initial velocity, u = 2 m/s
Acceleration , a = 9.81 m/s²
Displacement, s = 40 m
We have equation of motion s= ut + 0.5 at²
Substituting
s= ut + 0.5 at²
40 = 2 x t + 0.5 x 9.81 x t²
4.9t² + 2t - 40 = 0
t = 2.66 s or t = -3.06 s
So, time is 2.66 s.
Option C is the correct answer.
Answer:
Opposite sides are congruent (AB = DC).
Opposite angels are congruent (D = B).
Consecutive angles are supplementary (A + D = 180°).
If one angle is right, then all angles are right.
The diagonals of a parallelogram bisect each other.
Each diagonal of a parallelogram separates it into two congruent triangles.
Explanation: #if you need any queshtions answered within secs/mins hit me up and I gotchu.
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>