Answer: 2.8 moles
Explanation:
The balanced equation below shows that 1 mole of sodium oxide reacts with 1 mole of water to form 2 moles of sodium hydroxide respectively.
Na2O + H2O --> 2NaOH
1 mole of H2O = 2 moles of NaOH
Let Z moles of H2O = 5.6 mole of NaOH
To get the value of Z, cross multiply
5.6 moles x 1 mole= Z x 2 moles
5.6 = 2Z
Divide both sides by 2
5.6/2 = 2Z/2
2.8 = Z
Thus, 2.8moles of H2O are needed to produce 5.6 mol of NaOH
Answer:
Na(s) + C(s, graphite) + 1/2 H₂(g) + 3/2 O₂(g) → NaHCO₃(s)
Explanation:
The standard formation reaction is the synthesis of 1 mole of a substance from its elements in their most stables forms under standard conditions. The balanced chemical equation is:
Na(s) + C(s, graphite) + 1/2 H₂(g) + 3/2 O₂(g) → NaHCO₃(s)
Answer is: the molar mass od sodium carbonate (Na₂CO₃) is 106.0 g/mol.
M(Na₂CO₃) = 2 · Ar(Na) + Ar(C) + 3 · Ar(O).
M(Na₂CO₃) = 2 · 23 + 12 + 3 · 16 · g/mol.
M(Na₂CO₃) = 46 + 12 + 48 · g/mol.
M(Na₂CO₃) = 106 g/mol; molar mass of sodium carbonate.
Ar is relative atomic mass (the ratio of the average mass of atoms of a chemical element to one unified atomic mass unit) of an element.
Answer: The bond between boron and hydrogen in boron trihydride is covalent bond.
Explanation:
The type of bonding between the atoms forming a compound is determined by using the electronegativity difference between the atoms. According to the pauling's electronegativity rule:
- If , then the bond is non-polar.
- If , then the bond will be covalent.
- If , then the bond will be ionic.
We are given:
Electronegativity for boron = 2.0
Electronegativity for hydrogen = 2.1
As, is less than 1.7 and not equal to 0. Hence, the bond between boron and hydrogen is covalent bond.