1 mole = 6.22 x 10^23 molecules (Avogadro's number)
15 moles x (6.22 x 10^23) = 9.33 x 10^24 atoms
Answer:
Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. The most common mode is capillary zone electrophoresis (CZE), in which charged analytes migrate in a buffer under the influence of an electric field.
Explanation:
Answer:
I have the same
Explanation:
like I have the same homework as you are u in my class lol?
Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l
Answer:
The four coefficients in order, separated by commas are 1, 8, 5, 6
Explanation:
We count the atoms in order to balance this combustion reaction. In combustion reactions, the products are always water and carbon dioxide.
C₅H₁₂ + ?O₂→ ?CO₂ + ?H₂O
We have 12 hydrogen in right side and we can balance with 6 in the left side. But the number of oxygen is odd. We add 2 in the right side, so we have 24 H, and in the product side we add a 12.
As we add 2 in the C₅H₁₂, we have 10 C, so we must add 10 to the CO₂ in the product side.
Let's count the oxygens: 20 from the CO₂ + 12 from the water = 32.
We add 16 in the reactant side. Balanced equation is:
2C₅H₁₂ + 16O₂→ 10CO₂ + 12H₂O
We also can divide by /2 in order to have the lowest stoichiometry
C₅H₁₂ + 8O₂→ 5CO₂ + 6H₂O