For example we are going to use this unbalanced chemical reaction:
H₂ + O₂ → H₂O.
First, calculate number of atoms (hydrogens and oxygens) on left and right. There is two oxygen and two hydrogen on left and two hydrogen and one oxygen on right.
You can not change molecular formula of compound, only you can put coefficient in fron of compound to balance reaction.
Put 2 in front water to balance oxygen (now you have two oxygens on left and right). But now you have four hydrogens on right, so you must put 2 in fron hydrogen on the left.
2H₂ + O₂ → 2H₂O.
The element is TELLURIUM. Tellurium has atomic number 52 with the electronic configuration of [Kr] 4d10 5s2 5p4. The element belongs to group 16 elements on the periodic table. It exhibits various oxidation states: +2, +4, +6, and -2. +4 is its most common oxidation state.
Answer:
0.54g of Cr
Explanation:
Current (I) = 10A
Time (t) = 100s
Molecular mass of Cr = 51.996 amu
Faraday's first law of electrolysis states that
The mass of the substance (m) of a given substance deposited at an electrode is directly proportional to the quantity of electricity or charge (Q) passed
m = nQ
M = mass of the substance
n = electrochemical constant
Q = charge passed through it
Q = IT
Q = (10 * 100) = 1000C
1 moles = molarmass = Faraday's constant (96500C)
Molar mass = Faraday's constant (96500C)
51.996 g = 96500C
How many grams will be liberated with 1000C
51.996g = 96500C
Xg = 1000C
X = (1000 * 51.996) / 96500
X = 51996 / 96500
X = 0.5388g = 0.54 g of Cr will be deposited
Answer:
The activation energy was reached was 10:45 a.m. The additional energy did not affect the reaction.
Explanation:
Answer:
A. when dissolved in water
Explanation:
Water is an extremely polar molecule, meaning it has a positive end a negative end. When an ionic compound is dissolved, the positive pole of water will be attracted to the negative ion and attach itself to it. The same goes for the positive ions. That's how water breaks down ionic compounds