Answer:
I also have this question but see the 69 page of ur question book
Bleach and anytype of cleaner like window cleaner or disinfectant is very dangerous because if you mix those two together it might cause a very deadly fume and can cause lung failure and death within about 5 hours
Answer: the correct option is A (A zero net force causes no change to an object's
motion.)
Explanation:
Force is a vector quantity that causes an object to accelerate or change velocity when pushed or pulled. While a NET FORCE can be defined as the combination of all forces acting on an object which is equally capable of accelerating the object.
When a NET FORCE is equal to zero( that is zero net force),there will be no change to an object's motion. When the net force of an object is equal to zero , it shows the object is in either static equilibrium( the objects velocity is zero) or dynamic equilibrium(where the object is moving at constant velocity). In both cases, the object remains motionless because the net forces is equal to zero.
This is a straightforward dilution calculation that can be done using the equation
where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.
Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

Substituting in our values, we get
![\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].](https://tex.z-dn.net/?f=%5C%5BM_2%3D%5Cfrac%7B%5Cleft%20%28%2050%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%5Cleft%20%28%200.235%20%5Ctext%7B%20M%7D%20%5Cright%20%29%7D%7B%5Cleft%20%28%20200.0%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%7D%3D%200.05875%20%5Ctext%7B%20M%7D%5C%5D.)
So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.
Answer:
the answer is unsaturated
Explanation:
A saturated solution contains more solute per volume of solvent than an unsaturated solution. The solute has dissolved until no more can, leaving undissolved matter in the solution. ... In a supersaturated solution, there is more dissolved solute than in a saturated solution.