Answer:Methane gas is evolved from the reaction mixture.
Explanation:
When ethyl acetoacetate is treated with grignard reagent a carbanion is generated.
There are two acidic hydrogens which are present on the carbon which is in between the ester and the ketone group in ethylacetoacetate.
These two protons are also called active methylene protons and they are very acidic in nature due to the presence of two electron withdrawing substituents that is an ester and ketone.
CH₃MgBr is grignard reagent and it is an organo-metallic copmpound . Carbon here in CH₃MgBr exists as carbanion CH3⁻ which is basic enough to abstract the acidic protons present on ethylacetoacetate.
As CH3⁻ abstracts an acidic proton from ethylacetoacetate it become CH₄ which is methane. As methane is a gas so it is methane gas which is evolved from the reaction mixture.
As the acidic proton is abstracted from ethylacetoacetate which leads to generation of carbanion and this carbanion is very stable as it can be delocalized on to the two carbonyl groups . As we add aqueous acid to the reaction mixture the carbanion can again be protonated and its protonation would lead to the generation of ethylacetoacetate again.
Answer: The enthalpy change for formation of butane is -125 kJ/mol
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
Thus enthalpy change for formation of butane is -125 kJ/mol
Potential Energy is the stored energy in an object or system because of its position or configuration. Kinetic energy of an object is relative to other moving and stationary objects in its immediate environment.
Answer:
The box will move towards me by the additional force of 60N.
Explanation:
I am pulling the box with a force of 30N and my friend is pushing the box in the same direction with a force of 30N.
Here two forces are exhibited in the same direction that is towards myself as a result the box will move towards me by an additional force of 30N+30N=60N.
Answer:
They have fewer hydrogen atoms attached to the carbon chain than alkanes
Explanation:
Let's compare ethane (an alkane) with ethene (an alkene) and ethyne (an alkyne):
- Ethane's formula is C₂H₄, while ethene's is C₂H₄ and ethyne's C₂H₂.
As you can see, alkenes and alkynes have fewer hydrogen atoms attached to the carbon chain due to them having multiple bonds between the carbon atoms.