Answer:
The same number of each element present before the reaction takes place must also be present on the product side of the equation. Coefficients are placed in front of a chemical formula to show the number of moles of that substances that are necessary for the reaction to occur.
Explanation:
D = m/ V
8.9 = 3 / V
V = 3 / 8.9
V = 0.3 cm³
Answer A
hope this helps!
Answer:
pKa = 3.675
Explanation:
∴ <em>C</em> X-281 = 0.079 M
∴ pH = 2.40
let X-281 a weak acid ( HA ):
∴ HA ↔ H+ + A-
⇒ Ka = [H+] * [A-] / [HA]
mass balance:
⇒<em> C</em> HA = 0.079 M = [HA] + [A-]
⇒ [HA] = 0.079 - [A-]
charge balance:
⇒ [H+] = [A-] + [OH-]... [OH-] is negligible; it comes from to water
⇒ [H+] = [A-]
∴ pH = - log [H+] = 2.40
⇒ [H+] = 3.981 E-3 M
replacing in Ka:
⇒ Ka = [H+]² / ( 0.079 - [H+] )
⇒ Ka = ( 3.981 E-3 )² / ( 0.079 - 3.981 E-3 )
⇒ Ka = 2.113 E-4
⇒ pKa = - Log ( 2.113 E-4 )
⇒ pKa = 3.675
Answer:
92.49 %
Explanation:
We first calculate the number of moles n of AgBr in 0.7127 g
n = m/M where M = molar mass of AgBr = 187.77 g/mol and m = mass of AgBr formed = 0.7127 g
n = m/M = 0.7127g/187.77 g/mol = 0.0038 mol
Since 1 mol of Bromide ion Br⁻ forms 1 mol AgBr, number of moles of Br⁻ formed = 0.0038 mol and
From n = m/M
m = nM . Where m = mass of Bromide ion precipitate and M = Molar mass of Bromine = 79.904 g/mol
m = 0.0038 mol × 79.904 g/mol = 0.3036 g
% Br in compound = m₁/m₂ × 100%
m₁ = mass of Br in compound = m = 0.3036 g (Since the same amount of Br in the compound is the same amount in the precipitate.)
m₂ = mass of compound = 0.3283 g
% Br in compound = m₁/m₂ × 100% = 0.3036/0.3283 × 100% = 0.9249 × 100% = 92.49 %
Trigonal planar. Hope that helps!