<h3>
Answer:</h3>
10.6 mol NO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 4NH₃ + 5O₂ → 4NO + 6H₂O
[Given] 13.2 mol O₂
<u>Step 2: Identify Conversions</u>
[RxN] 5 mol O₂ → 4 mol NO
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
10.56 mol NO ≈ 10.6 mol NO
Answer: Location 3 is warmer than location 2 and 1
Explanation:
Answer:
-3135.47 kJ/mol
Explanation:
Step 1: Write the balanced equation
C₆H₆(l) + 7.5 O₂(g) ⇒ 6 CO₂(g) + 3 H₂O(g)
Step 2: Calculate the standard enthalpy change of the reaction (ΔH°r)
We will use the following expression.
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpies of formation
p: products
r: reactants
ΔH°r = 6 mol × ΔH°f(CO₂(g)) + 3 mol × ΔH°f(H₂O(g)) - 1 mol × ΔH°f(C₆H₆(l)) - 7.5 mol × ΔH°f(O₂(g))
ΔH°r = 6 mol × (-393.51 kJ/mol) + 3 mol × (-241.82 kJ/mol) - 1 mol × (48.95 kJ/mol) - 7.5 mol × 0 kJ/mol
ΔH°r = -3135.47 kJ
Since this enthalpy change is for 1 mole of C₆H₆(l), we can express it as -3135.47 kJ/mol.