Answer:
the ansewr is
Step-by-step explanation:
c
In the binomial expansion (2x + 3)^5 , there are 6 terms.
According to the question, given that
Binomial expansion (2x + 3)^5
Number of terms in a binomial expansion of (x + y)^n is
N = n + 1 words in total
In the binomial expansion (2x + 3)^5
n = 5
N = 5 + 1 = 6
Therefore, In Binomial expansion (2x + 3)^5 there are 6 terms.
The algebraic expression (x + y)n can be expanded according to the binomial theorem, which represents it as a sum of terms using separate exponents of the variables x and y. Each word in a binomial expansion has a coefficient, which is a numerical value.
The formula for expanding the exponential power of a binomial expression is provided by the binomial theorem, sometimes referred to as the binomial expansion. The following is the binomial expansion of (x + y)n using the binomial theorem:

To learn more about binomial theorem visit here : brainly.com/question/2165968
#SPJ4
Answer:
5.545
Step-by-step explanation:
This problem can be easily solved by using the law of cosines, which relates the lengths of the sides of a triangle to the cosine of one of its angles.
in this case, the formula can be applied in the following way
a^2 = b^2 + c^2 - 2*b*c*cos(α)
Where
a,b,c are each of the sides of the triangle,
α is the angle between sides b and c
(See attached picture)
If we use the formula we get
a^2 = (9)^2 + (6)^2 - 2*(9)(6)*cos(37°)
a^2 = 81 + 36 - 86.2526
a^2 = 30.747
a = sqrt(30.747)
a = 5.545
Answer:
17 3.14
/30
Step-by-step explanation: