Answer:
Step-by-step explanation:
(-4 + 3)/2= -1/2
(-2 + 3)/2= 1/2
(-1/2, 1/2) the midpoint
Solve each of the equations independently, then determine if the are continuous or discontinuous.
15≥-3x [start here]
-5≤x [divide both sides by (-3). *Dividing by a negative number means the direction of the sign changes!]
x≥-5 [just turned around for analysis]
Next equation:
2/3x≥-2 [start here]
x≥-2(3/2) [multiply both sides of the equation by the reciprocal, 3/2)
x≥-3
So, (according to the first equation) all values of x must be greater than, or equal to -5.
(According to the second equation) all values of x must be greater than, or equal to -3.
So, when graphed on a number line, both equations graph in the same direction, so they are continuous.
See picture for solution to your problem.
Answer:
B
Step-by-step explanation:
Equation of line 1:
Choose two points : (-1, 0) & (0,2)
y -intercept = b = 2
y = mx+ 2
Plugin the values of the points ( -1 , 0) in the above equation
0 = -1m + 2
-2 = -m
m = 2
Equation of line 1 : y = 2x + 2
Equation of line 2:
(5,0) & (0,5)
y-intercept = b = 5
y = mx +b
y = mx + 5
Plugin the value of points (5 , 0) in the above equation
0 = 5m + 5
-5 = 5m
-5/5 = m
m = -1
Equation of line 2: y = -x + 5
Conclusion: 2x + 2 = -x + 5