<span>We are given that ||e|| = 1, ||f|| = 1. </span>
<span>Since ||e + f|| = sqrt(3/2), we have </span>
<span>3/2 = (e + f) dot (e + f) </span>
<span>= (e dot e) + 2(e dot f) + (f dot f) </span>
<span>= ||e||^2 + 2(e dot f) + ||f||^2 </span>
<span>= 1^2 + 2(e dot f) + 1^2 </span>
<span>= 2 + 2(e dot f). </span>
<span>So e dot f = -1/4. </span>
<span>Therefore, </span>
<span>||2e - 3f||^2 = (2e - 3f) dot (2e - 3f) </span>
<span>= 4(e dot e) - 12(e dot f) + 9(f dot f) </span>
<span>= 4||e||^2 - 12(e dot f) + 9||f||^2 </span>
<span>= 4(1)^2 - 12(-1/4) + 9(1)^2 </span>
<span>= 4 + 3 + 9 </span>
<span>= 16. </span>
Answer:
The process of digging a site includes
D or B
Answer:
f(x) = 7/(x+3) -38/(x+3)²
Step-by-step explanation:
The denominator is a perfect square, so the decomposition to fractions will involve both a linear denominator and a quadratic denominator.
You can start with the form ...
... f(x) = B/(x+3) + A/(x+3)²
and write this sum as ...
... f(x) = (Bx +3B +A)/(x+3)²
Equating coefficients gives ...
... Bx = 7x . . . . . B = 7
... 3B +A = -17 . . . . the constant term
... 21 +A = -17 . . . . filling in the value of B
... A = -38 . . . . . . . subtract 21 to find A
Now, we know ...
... f(x) = 7/(x+3) -38/(x+3)²
Answer:
cos13°
Step-by-step explanation:
Using the cofunction identity
sinx° = cos(90 - x)°
sin77° = cos(90 - 77)° = cos13°
Answer: what??
Step-by-step explanation: