I could not get it to work with all of those numbers. The only number that caused an issue was 29. I used 28 instead and it worked. I'm not sure if 29 was a typo, but I couldn't get 29 to work.
Answer: 3,988.8
Usaremos la fómula: I = C * i * n
I = 72 000 * 0.05 * (1 año + 1 mes + 10 día)
I = 72 000 * 0.05 * (1 + 0.08 + 0.0028)
I = 72 000 * 0.05 * 1.108
3,988.8
Step-by-step explanation:
Podemos obtener el interés que produce un capital con la siguiente fórmula:
I = C * i * n
Ejemplo: Si queremos calcular el interés simple que produce un capital de 1.000.000 pesos invertido durante 5 años a una tasa del 8% anual. El interés simple se calculará de la siguiente forma:
I = 1.000.000 * 0,08 * 5 = 400.000
Si queremos calcular el mismo interés durante un periodo menor a un año (60 días), se calculará de la siguiente forma:
Periodo: 60 días = 60/360 = 0,16
I = 1.000.000 * 0,08 * 60/360 = 13.333
Espero te ayude :3
Answer:
“Principal” is a term that has several financial meanings. The most commonly used refers to the original sum of money borrowed in a loan or put into an investment.
Answer:
y = -3x + 7
Step-by-step explanation:
The equation of a line
y = mx + c
y - intercept point y
m - slope of the line
x - intercept point x
c - intercept point of the line
Step 1: find the slope
m = y2 - y1 / x2 - x1
Given two points
( 1 , 4) ( 2 , 1)
x1 = 1
y1 = 4
x2 = 2
y2 = 1
insert the values
m = 1 - 4 / 2 - 1
m = -3/1
m = -3
y = -3x + c
Step 2: substitute any of the two points given into the equation of a line
y = -3x + c
( 1 ,4)
x = 1
y = 4
4 = -3(1) + c
4 = -3 + c
4 + 3 = c
c = 7
Step 3: sub c into the equation
y = -3x + 7
The equation of the line is
y = -3x + 7
Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:
