|Acceleration| = (change in speed) / (time for the change).
Change in speed = (6 mi/hr - 25 mi/hr) = -19 mi/hr
Time for the change = 10 sec
|Acceleration| = (-19 mi/hr) / (10 sec) = -1.9 mile per hour per second
Admittedly, that's a rather weird unit.
Other units, perhaps more comfortable ones, are:
-6,840 mi/hr²
-2.79 feet/sec²
Explanation:
The given data is as follows.
Mass of small bucket (m) = 4 kg
Mass of big bucket (M) = 12 kg
Initial velocity (
) = 0 m/s
Final velocity (
) = ?
Height
= 2 m
and,
= 0 m
Now, according to the law of conservation of energy
starting conditions = final conditions

235.44 =
+ 78.48
= 4.43 m/s
Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.
Kinetic energy is what a baseball use while traveling in the air
600
mph
Velocity is the distance traveled in a given time, or
v
=
x
t
where
v
is velocity,
x
is distance and
t
is time.
Here,
x
=
3000
and
t
=
5.0
, so
v
=
x
t
=
3000
5
=
600
Don't forget units. Since the question's data is in miles and hours, the units will be miles per hour, or mph, so
3000
miles
5
hours
=
600
miles
hour
=
600
mph
Given :
Whole-body dose of 8.4 mGy from gamma-rays and 1.2 mGy from 80-Kev neutrons.
To Find :
The effective dose to a worker.
Solution :
By the given information effective dose to a worker is given by :
E.D = ( 8.4 × 1.2 × 0.12 ) + ( 1.2 × 1 × 1 )
E.D = 1.2096 + 1.2
E.D = 2.4096
Therefore, the effective dose to a worker is 2.4096 .