Answer:
The most common position for an double bond in an unsaturated fatty acid is delta 9 (Δ⁹)
Explanation:
Unsaturated fatty acids are carboxylic acids which contains one or more double bonds. The chain length as well as the number of double bonds is written separated by a colon. The positions of the double bonds are specified starting from the carboxyl carbon, numbered as 1, by superscript numbers following a delta (Δ). For example, an 18-carbon fatty acid containing a single double bond between carbon number 9 and 10 is written as 18:1(Δ⁹).
In most monounsaturated fatty acids, the double bond is between C-9 and C-10 (Δ⁹), and the other double bonds of polyunsaturated fatty acids are generally Δ¹² and Δ¹⁵. This positioning is due to the nature of the biosynthesis of fatty acids. In the mammalian hepatocytes, double bonds are introduced easily into fatty acids at the Δ⁹ position, but cannot introduce additional double bonds between C-10 and the methyl-terminal end. However, plants are able to introduce these additional double bonds at the Δ¹² and Δ¹⁵ positions.
The answer is GENETIC DIVERSITY and SPECIES DIVERSITY
Answer:

Explanation:
,
are strong electrolytes. Hence they are fully ionized in aqueous solution.
is a sparingly soluble salt. Hence it remains undissociated in aqueous solution.
So, total ionic equation:

Net ionic equation is written by omitting spectator ions from total ionic equation.
Here,
and
ions are spectator ions as they remain present on both side of total ionic equation.
So, net ionic equation:

So, option (d) is correct.
Explanation:
<em>Phys</em><em>ical</em><em> </em><em>Change </em><em>is</em><em> </em><em>a</em><em> </em><em>type </em><em>of </em><em>change </em><em>where</em><em> </em><em>by</em><em> </em><em>no</em><em> </em><em>new</em><em> </em><em>chemical </em><em>substance</em><em> </em><em>is</em><em> </em><em>formed</em><em>.</em><em> </em><em>Physical</em><em> </em><em>changes</em><em> </em><em>are </em><em>reversible</em><em>.</em><em> </em><em>whilst</em><em> </em><em>Chemical</em><em> </em><em>change </em><em>is</em><em> </em><em>a</em><em> </em><em>change </em><em>where </em><em>new</em><em> </em><em>chem</em><em>i</em><em>c</em><em>a</em><em>l</em><em> </em><em>substance</em><em> </em><em>is</em><em> </em><em>always</em><em> </em><em>formed.</em><em> </em><em>Chemical</em><em> </em><em>changes </em><em>are</em><em> </em><em>usually</em><em> </em><em>irreversible</em><em>.</em>
<em>Examples </em><em>of </em><em>Physical</em><em> </em><em>Change</em><em> </em><em>include</em><em>;</em>
<em>Melting</em><em> </em><em>of</em><em> </em><em>Ice</em>
<em>Melting</em><em> </em><em>of </em><em>Candle</em>
<em>Grinding </em><em>of </em><em>chalk</em>
<em>Magnetization </em><em>of</em><em> </em><em>Iron</em>
<em>Examples</em><em> </em><em>of</em><em> </em><em> </em><em>Chemical</em><em> </em><em>Change</em><em> </em><em>includes</em><em>;</em>
<em>Cooking</em><em> </em><em>of </em><em>food</em>
<em>Rusting </em><em>of </em><em>Iron</em>
<em>Burning</em><em> </em><em>of </em><em>Charcoal</em>
The product of replacement reaction of 2Fe + 3 CUSO4 yield 2Fe(SO4)3 + 3 Cu
during replacement reaction involve replacement of less reactive element in the reactivity series from its compound. Fe is more reactive in the reactivity series than cu therefore it Fe replaces cu from CUSO4