M(Mn(ClO3)3)=(54.938)+(35.45x3)+(15.999x9)
M(Mn(ClO3)3)=305.279 g/mol
The answer which would have been a major difference in the ocean basins is the following one:
<span>B. Mid-ocean ridges would have been chains of mountains.
Given that the waters were lower in the past, those ridges would no longer be just mid-ocean ridges, but complete mountains due to the low levels of water around them.</span>
The correct answer for the question that is being presented above is this one: "<span>16.728 g."</span>
Given that
ΔHsolid = -5.66 kJ/mol.
This means that 5.66 kJ of heat is released when 1 mole of NH3 solidifies
When 5.57 kJ of heat is released
amount of NH3 solidifies = 5.57/5.66 = 0.984 moles
<span>molar mass of NH3 = 17 g/mole </span>
<span>1 mole of NH3 = 17 g </span>
So, 0.984 moles of NH3 = 17 X 0.984 = 16.728 g
<span>According to Le Chatelier's Principle, the position of
equilibrium moves to counteract the change, the position of equilibrium
will move so that the concentration of
products of chemical reaction increase, if:</span>
<span>1) increase temperature, because this endothermic reaction.</span>
<span>2) increase concentration of reactant.</span>
<span>3) decrease pressure of the system, so reaction moves to direction where is more molecules.</span>
<span>
</span>
1.20x1,024=1228.8 this is your answer.
hope that this helps.