Answer:
While weathering and erosion are similar processes, they are not synonymous. Weathering involves the breakdown of rocks and minerals on Earth, whereas erosion involves the removal of soil and rock materials.
Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
Answer:
Mole fraction for solute = 0.1, or 10%
Molality = 6.24 mol/kg
Explanation:
22.3% by mass → In 100 g of solution, we have 22.3 g of HCOOH
Mass of solution = 100 g
Mass of solute = 22.3 g
Mass of solvent = 100 g - 22.3g = 77.7 g
Let's convert the mass to moles
22.3 g . 1mol/ 46 g = 0.485 moles
77.7 g. 1mol / 18 g = 4.32 moles
Total moles = 4.32 moles + 0.485 moles = 4.805 moles
Xm for solute = 0.485 / 4.805 = 0.100 → 10%
Molality → mol/ kg → we convert the mass of solvent to kg
77.7 g. 1 kg / 1000g = 0.0777 kg
0.485 mol / 0.0777 kg = 6.24 m
Answer:
A. is the correct point.
Explanation:
This is true because no matter how many mL of water is added, the solution only gets more height; the concentration in everything else stays the same, and water doesn't have any concentration. Very confusing, I know. Good luck!