First there is a need to calculate the molar mass of Ba(NO₃)₂:
137.3 + 2 (14.0) + 6 (16) = 261.3 grams/mole
The molar mass, denoted by M in chemistry refers to a physical characteristic illustrated as the mass of a given component divided by the amount of the component. The molar masses are always denoted in grams/mole.
After finding the molar mass, the number of moles can be identified as:
432 grams / 261.3 g/mol = 1.65 moles of Ba(NO₃)₂.
Explanation:
here is the answer to your question
Answer:
285.185 (.185 repeating) cm^3
Explanation:
To get the answer, you divide 140 by 27 to get 5.185 (.185 repeating). Then, you multiply 5.185 (.185 repeating) by 55 and get 285.185 (.185 repeating) cm^3. Please use ^ next time to indicate exponents.
Answer:
Option B
Explanation:
Salt is a non-volatile solute and hence adding salt will increase the boiling point of water and hence reduce the vapor pressure. While on the other hand, adding more water will require more time to boil and hence produce vapor and thus the vapor pressure. Shaking will also not help in increasing the vapor pressure. Thus, only increasing the temperature of the water will create more vapors at a faster rate and hence increase the vapor pressure.
Thus, option B is the correct answer
Answer:A large number of autotrophic bacteria—bacteria that produce their own food—live near hydrothermal vents and submarine volcanoes.
These bacteria are considered chemosynthetic, meaning they produce food from chemical reactions usually involving carbon dioxide, oxygen, or hydrogen