<u><em>Answer:</em></u>



<u><em>Explanation:</em></u>
<u>Part 1: Solving for m</u>
<u>We are given that:</u>
E = mc²
To solve for m, we will need to isolate the m on one side of the equation
This means that we will simply divide both sides by c²

<u>Part 2: Solving for c</u>
<u>We are given that:</u>
E = mc²
To solve for c, we will need to isolate the m on one side of the equation
This means that first we will divide both sides by m and then take square root for both sides to get the value of c

<u>Part 3: Solving for E</u>
<u>We are given that:</u>
m = 80 and c = 0.4
<u>To get the value of E, we will simply substitute in the given equation: </u>
E = mc²
E = (80) × (0.4)²
E = 12.8 J
Hope this helps :)
For the reaction below at dynamic equilibrium, it is true that the rate of the forward reaction equals the rate of the reverse reaction.
Let's consider the following reaction at equilibrium.
N₂(g) + 3 H₂(g) = 2 NH₃(g)
<h3>What is the chemical equilibrium?</h3>
Is a state in which the concentrations of reactants and products are constant and the forward reaction rate and constant reaction rate are equal.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant (K) is the ratio of the concentrations of the products to the concentrations of the reactants, all raised to their stoichiometric coefficients.
Let's consider which statement is true for the equilibrium system.
- The concentration of NH₃ is greater than the concentration of N₂. FALSE. There is not enough information to confirm this, we would need to know the value of K.
- The concentration of NH₃ equals the concentration of N₂. FALSE. There is not enough information to confirm this, we would need to know the value of K.
- The rate of the forward reaction equals the rate of the reverse reaction. TRUE. This is always true for a reaction at equilibrium.
- The rate of the forward reaction is greater than the rate of the reverse reaction. FALSE. At equilibrium, both rates are equal.
For the reaction below at dynamic equilibrium, it is true that the rate of the forward reaction equals the rate of the reverse reaction.
Learn more about chemical equilibrium here: brainly.com/question/5081082
It will become an ion and no longer be neutral
Answer:
2. 
3. 
Explanation:
Hello there!
2. In this case, we can evidence the problem by which volume and temperature are involved, so the Charles' law is applied to:

Thus, considering the temperatures in kelvins and solving for the final volume, V2, we obtain:

Therefore, we plug in the given data to obtain:

3. In this case, it is possible to realize that the 3.7 moles of neon gas are at 273 K and 1 atm according to the STP conditions; in such a way, considering the ideal gas law (PV=nRT), we can solve for the volume as shown below:

Therefore, we plug in the data to obtain:

Best regards!