Answer:
JM
Step-by-step explanation:
A tangent line is a line that only intersects a circle at one point.
LG and CJ are not lines, and GH intersects the circle twice (at point G and point H), so JM is the tangent line.
Answer:
10
Step-by-step explanation:
125/12.5
Pretty sure it’s C That one makes the most sense to me please let me know if you get it right
The line integral along the given positively oriented curve is -216π. Using green's theorem, the required value is calculated.
<h3>What is green's theorem?</h3>
The theorem states that,
![\int_CPdx+Qdy = \int\int_D(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dx dy](https://tex.z-dn.net/?f=%5Cint_CPdx%2BQdy%20%3D%20%5Cint%5Cint_D%28%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D%20-%20%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%29dx%20dy)
Where C is the curve.
<h3>Calculation:</h3>
The given line integral is
![\int_C9y^3dx-9x^3dy](https://tex.z-dn.net/?f=%5Cint_C9y%5E3dx-9x%5E3dy)
Where curve C is a circle x² + y² = 4;
Applying green's theorem,
P = 9y³; Q = -9x³
Then,
![\frac{\partial P}{\partial y} = \frac{\partial 9y^3}{\partial y} = 27y^2](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%20%3D%20%5Cfrac%7B%5Cpartial%209y%5E3%7D%7B%5Cpartial%20y%7D%20%3D%2027y%5E2)
![\frac{\partial Q}{\partial x} = \frac{\partial -9x^3}{\partial x} = 27x^2](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D%20%3D%20%5Cfrac%7B%5Cpartial%20-9x%5E3%7D%7B%5Cpartial%20x%7D%20%3D%2027x%5E2)
![\int_C9y^3dx-9x^3dy = \int\int_D(-27x^2 - 27y^2)dx dy](https://tex.z-dn.net/?f=%5Cint_C9y%5E3dx-9x%5E3dy%20%3D%20%5Cint%5Cint_D%28-27x%5E2%20-%2027y%5E2%29dx%20dy)
⇒ ![-27\int\int_D(x^2 + y^2)dx dy](https://tex.z-dn.net/?f=-27%5Cint%5Cint_D%28x%5E2%20%2B%20y%5E2%29dx%20dy)
Since it is given that the curve is a circle i.e., x² + y² = 2², then changing the limits as
0 ≤ r ≤ 2; and 0 ≤ θ ≤ 2π
Then the integral becomes
![-27\int\limits^{2\pi}_0\int\limits^2_0r^2. r dr d\theta](https://tex.z-dn.net/?f=-27%5Cint%5Climits%5E%7B2%5Cpi%7D_0%5Cint%5Climits%5E2_0r%5E2.%20r%20dr%20d%5Ctheta)
⇒ ![-27\int\limits^{2\pi}_0\int\limits^2_0 r^3dr d\theta](https://tex.z-dn.net/?f=-27%5Cint%5Climits%5E%7B2%5Cpi%7D_0%5Cint%5Climits%5E2_0%20r%5E3dr%20d%5Ctheta)
⇒ ![-27\int\limits^{2\pi}_0 (r^4/4)|_0^2 d\theta](https://tex.z-dn.net/?f=-27%5Cint%5Climits%5E%7B2%5Cpi%7D_0%20%28r%5E4%2F4%29%7C_0%5E2%20d%5Ctheta)
⇒ ![-27\int\limits^{2\pi}_0 (16/4) d\theta](https://tex.z-dn.net/?f=-27%5Cint%5Climits%5E%7B2%5Cpi%7D_0%20%2816%2F4%29%20d%5Ctheta)
⇒ ![-108\int\limits^{2\pi}_0 d\theta](https://tex.z-dn.net/?f=-108%5Cint%5Climits%5E%7B2%5Cpi%7D_0%20d%5Ctheta)
⇒ ![-108[2\pi - 0]](https://tex.z-dn.net/?f=-108%5B2%5Cpi%20-%200%5D)
⇒ -216π
Therefore, the required value is -216π.
Learn more about green's theorem here:
brainly.com/question/23265902
#SPJ4
Answer:
137
Step-by-step explanation:
A straight line is 180 so take 180 and subtract 43