The three main types of lipids are triglycerides, steroids and phospholipids
Answer:
The new volume is 2415 mL
Explanation:
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C are used and are reference values for gases.
Boyle's law says that the volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure and is expressed mathematically as:
P * V = k
Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the gas pressure increases. And when the temperature is decreased, the gas pressure decreases. This can be expressed mathematically in the following way:

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Having two different states, an initial state and an final state, it is true:

In this case:
- P1= 0.9 atm
- V1=4,600 mL= 4.6 L (being 1 L=1,000 mL)
- T1= 195 °C= 468 °K (being 0°C=273°K)
The final state 2 is in STP conditions:
- P2= 1 atm
- V2= ?
- T2= 0°C= 273 °K
Replacing:

Solving:

V2= 2.415 L =2,415 mL
<u><em>The new volume is 2415 mL</em></u>
Answer:
r= 0.9949 (For 15,000)
r=0.995 (For 19,000)
Explanation:
We know that
Molecular weight of hexamethylene diamine = 116.21 g/mol
Molecular weight of adipic acid = 146.14 g/mol
Molecular weight of water = 18.016 g/mol
As we know that when adipic acid and hexamethylene diamine react then nylon 6, 6 comes out as the final product and release 2 molecule of water.
So


So
Mo= 226.32/2 =113.16 g/mol

Given that
Mn= 15,000 g/mol
So
15,000 = Xn x 113.16
Xn = 132.55
Now by using Carothers equation we know that


By calculating we get
r= 0.9949
For 19,000
19,000 = Xn x 113.16
Xn = 167.99
By calculating in same process given above we get
r=0.995
Balanced chemical reaction:
PbO₂<span>(s) + Sn(s)+ 4H</span>⁺(aq) → Pb²⁺(aq) + Sn²⁺(aq) + 2H₂O<span>(l).
Oxidation half-reaction: Sn </span>→ Sn²⁺ + 2e⁻.<span>
Reduction half-reaction: PbO</span>₂ + 4H⁺ + 2e⁻ → Pb²⁺ + 2H₂O.
Net reaction: Sn + PbO₂ + 4H⁺ + 2e⁻ → Sn²⁺ + 2e⁻ + Pb²⁺ + 2H₂O.
Oxidation is increase of oxidation number, reduction is decrease of oxidation number.
I understand here "bias" to be the uncertainty of measurements. So the order will be the following:
6.4 ± 0.5 s
<span>6.6 ± 0.1 s,
</span><span>6.63 ± 0.01 s,
</span><span>6.52 ± 0.05 s,
</span>
(notice how the second number, the one behind the symbol ± gets smaller, as the bias gets smaller).