Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Nonpolar compound would be symmetrical
Co2
Explanation:
CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l)
Answer:
The molar mass of the unknown gas is 
Explanation:
Let assume that the gas is O2 gas
O2 gas is to effuse through a porous barrier in time t₁ = 4.98 minutes.
Under the same conditions;
the same number of moles of an unknown gas requires time t₂ = 6.34 minutes to effuse through the same barrier.
From Graham's Law of Diffusion;
Graham's Law of Diffusion states that, at a constant temperature and pressure; the rate of diffusion of a gas is inversely proportional to the square root of its density.
i.e

where K = constant
If we compare the rate o diffusion of two gases;

Since the density of a gas d is proportional to its relative molecular mass M. Then;

Rate is the reciprocal of time ; i.e

Thus; replacing the value of R into the above previous equation;we have:

We can equally say:





