Answer:
42.2 moles of H3PO4
Explanation:
The equation of the reaction is:
P2O5(s) + 3 H2O(l) ⟶ 2 H3PO4.
First we must obtain the number of moles of P2O5 from
Number of moles of P2O5= reacting mass of P2O5/molar mass of P2O5
Molar mass of P2O5= 141.9445 g/mol
Number of moles= 3000g/141.9445 g/mol = 21.1 moles of P2O5
From the reaction equation;
1 mole of P2O5 yields 2 moles of H3PO4
21.1 moles of P2O5 will yield 21.1 ×2/ 1 = 42.2 moles of H3PO4
Answer:
Part A
Kp = 3.4 x 10⁴
Part B
Kp = 2.4 x 10⁻¹⁴
Part C
Kp = 1.2 x 10⁹
Explanation:
2PH₃(g) + As₂(g) ⇌ 2 AsH₃(g) + P₂(g) Kp = 2.9 x 10⁻⁵
Kp = [AsH₃]²[P₂]/[PH₃]²[As] = 2.9 x 10⁻⁵
Part A
it is the inverse of the equilibrium given
Kp(A) = 1/ Kp = 1 / 2.9 x 10⁻⁵ = 3.4 x 10⁴
Part B
Is the equilibrium where the coefficients have been multiplied by 3,
Kp(B) = ( Kp )³ = ( 2.9 x 10⁻⁵ )³ = 2.4 x 10⁻¹⁴
Part C
This is the reverse equilibrium multipled by 2.
Kp(C) = ( 1/Kp)² = ( 1/ 2.9 x 10⁻⁵ )² = 1.2 x 10⁹
The answer is True because elements in a compound combine and become an entirely different substance with its own unique properties.