1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
2 years ago
7

A train crosses a bridge that is 1300 m long in 1 minute and 5 seconds.

Physics
1 answer:
Nat2105 [25]2 years ago
3 0

Answer:

I'm pretty sure it's 20m/s because 1300m divided by 65 seconds is 20 so I think it's 20m/s

Explanation:

You might be interested in
At its closest point, Mercury is approximately 46 million kilometers from the sun. What is this distance in AU?
alina1380 [7]
1 astronomical unit 1 AU = 1.4960 * 10^11 meters
it is the average distance between earth and sun
mercury to sun distance is = 46,000,000 * 1000 meters
               = 4.6 * 10^9 meters = 4.6 * 10^9 / 1.4960 * 10^11  AU
               =  3.0.74 / 100  = 0.0374 AU

5 0
3 years ago
Read 2 more answers
Which of the following units are used to describe acceleration?
Pavel [41]

Answer:

m/s2 m/s

Explanation:

7 0
3 years ago
A 1,508 kg car rolling on a horizontal surface has a speed of 20.8 km/hr when it strikes a horizontal coiled spring and is broug
natali 33 [55]

Answer:

Approximately 1.79 \times 10^{5}\; {\rm N \cdot m^{-1}}, assuming friction between the vehicle and the ground is negligible.

Explanation:

Let m denote the mass of the vehicle. Let v denote the initial velocity of the vehicle. Let k denote the spring constant (needs to be found.) Let x denote the maximum displacement of the spring.

Convert velocity of the vehicle to standard units (meters per second):

\begin{aligned}v &= 20.8\; {\rm km \cdot h^{-1}} \times \frac{1000\; {\rm m}}{1\; {\rm km}} \times \frac{1\; {\rm h}}{3600\; {\rm s}} \\ &\approx 1.908\; {\rm m \cdot s^{-1}}\end{aligned}.

Initial kinetic energy ({\rm KE}) of the vehicle:

\begin{aligned}\frac{1}{2}\, m \, v^{2}\end{aligned}.

When the vehicle is brought to a rest, the elastic potential energy (\text{EPE}) stored in the spring would be:

\displaystyle \frac{1}{2}\, k\, x^{2}.

By the conservation of energy, if the friction between the vehicle and the ground is negligible, the initial \text{KE} of the vehicle should be equal to the {\rm EPE} of the vehicle. In other words:

\begin{aligned}\frac{1}{2}\, m \, v^{2} &= \frac{1}{2}\, k\, x^{2}\end{aligned}.

Rearrange this equation to find an expression for k, the spring constant:

\begin{aligned}k &= \frac{m\, v }{x^{2}}\end{aligned}.

Substitute in the given values m = 1508\; {\rm kg}, v \approx 1.908\; {\rm m\cdot s^{-1}}, and x = 6.87\; {\rm m}:

\begin{aligned}k &= \frac{m\, v }{x^{2}} \\ &\approx \frac{1508\; {\rm kg} \times 1.908\; {\rm m\cdot s^{-1}}}{(6.87\; {\rm m})^{2}} \\ &\approx 1.79 \times 10^{5}\; {\rm kg \cdot m \cdot s^{-2} \cdot m^{-3}}\\ &\approx 1.79 \times 10^{5}\; {\rm N \cdot m^{-1}}\end{aligned}

8 0
1 year ago
A 1.50-m string of weight 0.0125 N is tied to the ceil- ing at its upper end, and the lower end supports a weight W. Ignore the
Elena L [17]

The wave equation is missing and it is y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)

Answer:

A) 0.0534 seconds

B) 0.67N

C) 41

D) (8.50 mm)cos(172 rad/m x + 4830 rad/s t)

Explanation:

we are given weight of string = 0.0125N

Thus, since weight = mg

Then, mass of string = 0.0125/9.8

Mass of string = 1.275 x 10⁻³ kg

Length of string; L= 1.5 m .

mass per unit length; μ = (1.275 x 10⁻³)/1.5

μ = 0.85 x 10⁻³ kg/m

We are given the wave equation: y(x,t) = (8.50 mm)cos(172 rad/m x − 4830 rad/s t)

Now if we compare it to the general equation of motion of standing wave on a string which is:

y(x,t) = Acos(Kx − ω t)

We can deduce that

angular velocity;ω = 4830 rad/s

Wave number;k = 172 rad/m

A) Velocity is given by the formula;

V = ω/k

Thus, V = 4830/172 m/s

V = 28.08 m /s

Thus time taken to go up the string = 1.5/28.08 = 0.0534 seconds

B) We know that in strings,

V² = F/μ

Where μ is mass per unit length and V is velocity.

Thus, F = V²*μ =28.08² x 0.85 x 10⁻³

F = 0.67N

C) Formula for wave length is given as; wave length;λ = 2π /k

λ = 2 x π/ 172

λ = 0.0365 m

Thus, number of wave lengths over whole length of string

= 1.5/0.0365 = 41

D) The equation for waves traveling down the string

= (8.50 mm)cos(172 rad/m x + 4830 rad/s t)

8 0
3 years ago
A solid cylindrical object has a mass of 2.0 kg, a diameter
omeli [17]

Answer:

I = 0.0025 kg.m²

Explanation:

Given that

m= 2 kg

Diameter ,d= 0.1 m

Radius ,R=\dfrac{d}{2}

R=\dfrac{0.1}{2}

R=0.05 m

The moment of inertia of the cylinder about it's axis same as the disc and it is given as

I=\dfrac{mR^2}{2}

Now by putting the all values

I=\dfrac{2\times 0.05^2}{2}

I = 0.0025 kg.m²

Therefore we can say that the moment of inertia of the cylinder will be  0.0025 kg.m².

4 0
3 years ago
Other questions:
  • What quantity is multiplied by the hydraulic lift system of a dump truck?
    15·2 answers
  • What did Galileo discover when he dropped two cannon balls of different weights from the Leaning Tower of Pisa?
    15·2 answers
  • Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you.
    13·2 answers
  • A proton orbits a long charged wire, making 1.80 ×106 revolutions per second. The radius of the orbit is 1.20 cm What is the wir
    12·1 answer
  • WILL GIVE 5 STARS!!!! HELP ASAP!!!
    14·1 answer
  • an object travels in circular motion with a speed of 11.40 m/s. What is the centripetal acceleration if the radius of the circle
    15·1 answer
  • A car mass 600kg starts from rest moving uniform acceleration 0.2 m/s^2 after 60 seconds collides with stationary pick up van of
    10·1 answer
  • Monochromatic light with a wavelength of 600 nanometers (one nanometer is 10-9 meters) is incident upon a double slit arrangemen
    12·1 answer
  • Bagaimana cara untuk melatih kemampuan melempar tangkap yang baik dalam bola basket​
    12·1 answer
  • The frequency of a certain sound is 440 Mz. What is the wavelength of this sound when the temperature of the air is (a) 20°C; (b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!