Answer:
Actually, gravity is the weakest of the four fundamental forces. Ordered from strongest to weakest, the forces are 1) the strong nuclear force, 2) the electromagnetic force, 3) the weak nuclear force, and 4) gravity.
Answer:
Let the second medium be air (n₁=1)
The refractive index n₂ of the medium where first medium is air is found (a)
(a) n₂ = 2
Explanation:
Critical angle can be defined as the angle of incidence that provides the angle of refraction of 90°.
Refractive index of a medium can be defined as a number that describes that how fast a light will travel through that medium.
Critical angle and Refractive index are related by:


To find refractive index of medium with respect to air, substitute n₁=1 (Refractive index of air is 1)
Also θ(critical)=30°
Find n₂ :

<u>Answer</u>:
When light passes through an object unchanged, scientists call that process Transmission.
<u>Explanation</u>:
Transmission is the process where all the light that is passed through the material moves via the material without being absorbed. The Transmission depends on the affected radiation.The Transmittance of the medium is defined as the ratio between transmitted radiant power and incident radiant power. The light that is passed through the medium and not reflected will be either scattered or reflected. The light can be transmitted only through transparent or translucent material. Opaque object does not allows transmission of light.
Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.