Answer: In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Explanation:
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
The molarity of the solution is 1.1 
Explanation:
Molarity is a measure of the concentration of that substance that is defined as the number of moles of solute divided by the volume of the solution.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units 
In this case
- number of moles of solute= 0.564 moles
- volume= 0.510 L
Replacing:

Solving:
molarity= 1.1 
<u><em>The molarity of the solution is 1.1 </em></u>
<u><em></em></u>
Answer:
Mass cannot be created or destroyed
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Answer: The value of
for the half-cell reaction is 0.222 V.
Explanation:
Equation for solubility equilibrium is as follows.

Its solubility product will be as follows.
![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
Cell reaction for this equation is as follows.

Reduction half-reaction:
, 
Oxidation half-reaction:
,
= ?
Cell reaction: 
So, for this cell reaction the number of moles of electrons transferred are n = 1.
Solubility product, ![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
= 
Therefore, according to the Nernst equation
At equilibrium,
= 0.00 V
Putting the given values into the above formula as follows.

= 
= 0.577 V
Hence, we will calculate the standard cell potential as follows.



= 0.222 V
Thus, we can conclude that value of
for the half-cell reaction is 0.222 V.