Answer:HNO₃ and NO³⁻ would not function as buffer
Explanation:
The buffer solution are usually prepared by using any weak acid (which would partially dissociate) and mixing this weak acid with its own conjugate base or any weak base (which would partially dissociate) and mixing with with its conjugate acid.
A buffer solution is a solution which resists change in pH of the solution.
Since nitric acid is a very strong acid and hence neither nitric acid HNO₃ or its conjugate base NO³⁻ anionb is suitable for the preparation of buffer solution.
HCO³⁻ is a weak acid and hence it can form a buffer solution with its conjugate base CO₃²-. so they can be used to form buffer.
C₂H₅COOH is a weak acid and hence it can also form buffer solution with its conjugate base.
So only HNO₃and NO³⁻ would not be able to form buffer
So option a is the answer.
Answer:
There is NO cure for Down Syndrome
Explanation:
Down syndrome cannot be cured. Early treatment programs can help improve skills. They may include speech, physical, occupational, and/or educational therapy. With support and treatment, many people with Down syndrome live happy, productive lives
Answer:
By boiling and further condensing the liquid with the lowest boiling point.
Explanation:
Hello there!
In this case, according to the attached diagram, it turns out possible for us to infer that the mechanism whereby miscible liquids with different boiling points are separated is distillation, because the flask is heated until the boiling point of the liquid with the lowest value, in order to boil it and subsequently condense it, whereas the liquid with the highest boiling point remains in the flask; and therefore, the two liquids are separated.
Regards!
An anion is a negatively charged ion. An element can become an anion if it takes an extra electron such that it has one more electron than protons.
Atoms would preferentially taken an extra electron so that it can have a full octet and be more stable.

are some of the few elements that would have a -1 charge.
Explanation:
It is given that the total volume is (10 mL + 60 mL) = 70 mL.
Also, it is known that
= 
Where,
= total volume
= initial volume
Therefore, new concentration of
= 
= 
= 0.43 M
New concentration of NaOH = 
= 
= 0.14 M
So, the given reaction will be as follows.

Initial: 0.43 0.14 0
Change: -0.14 -0.14 0.14
Equilibrium: 0.29 0 0.14
As it is known that value of
= 4.74
Therefore, according to Henderson-Hasselbalch equation calculate the pH as follows.
pH = ![pK_{a} + log \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
= 
= 4.74 + (-0.316)
= 4.42
Therefore, we can conclude that the pH of given reaction is 4.42.