Answer:
The correct matching of the air mass and the letters in the word bank are given as follows;
1. Warm and humid ↔ D
2. Extremely cold and dry ↔ B
3. Cold and dry ↔ A
4. Cold and humid ↔ C
5. Warm and dry ↔ E
Where;
A Represents continental polar
B Represents Artic
C Represents Maritime Polar
D Represents Maritime Tropical
E Represents Continental Tropical
Explanation:
A. A continental polar is one that can be described as a cold and dry climate as the region is located at a further away from the oceanic water bodies that add humidity to the climate
B. The regions of the Artic and the Antarctic have very limited amount of precipitation every year because the air is very cold as well as dry
C. A polar climate is a cold climate region, while a maritime climate is humid.
Therefore, the maritime polar climate combines both cold and humid conditions
D. A warm and humid region has high rainfall and humidity, as such the maritime climate which are humid and the tropical climate, which are warm, combine to give a warm and humid climate
E. The continental tropical climate can be described as warm and dry, compared to the continental water bodies, due to the location being distant from and therefore, the absence of high moisture containing wind that comes from the oceans.
Pure uranium is radioactive. It will react with most nonmetallic elements to make compounds. When it comes into contact with air, a thin, black layer of uranium oxide will form on its surface. Uranium-235 is the only naturally occurring isotope that is fissile.
plz mark brainiest
Answer:
A) = 4.7 × 10⁻⁴atm
Explanation:
Given that,
Kp = 1.5*10³ at 400°C
partial pressure pN2 = 0.10 atm
partial pressure pH2 = 0.15 atm
To determine:
Partial pressure pNH3 at equilibrium
The decomposition reaction is:-
2NH3(g) ↔N2(g) + 3H2(g)
Kp = [pH2]³[pN2]/[pNH3]²
pNH3 =√ [(pH2)³(pN2)/Kp]
pNH3 = √(0.15)³(0.10)/1.5*10³ = 4.74*10⁻⁴ atm
![K_p = \frac{[pH_2] ^3[pN_2]}{[pNH_3]^2} \\pNH_3 = \sqrt{\frac{(pH_2)^3(pN_2)}{pNH_3} } \\pNH_3 = \sqrt{\frac{(0.15)^3(0.10)}{1.5 \times 10^3} } \\=4.74 \times 10^-^4atm](https://tex.z-dn.net/?f=K_p%20%3D%20%5Cfrac%7B%5BpH_2%5D%20%5E3%5BpN_2%5D%7D%7B%5BpNH_3%5D%5E2%7D%20%5C%5CpNH_3%20%3D%20%5Csqrt%7B%5Cfrac%7B%28pH_2%29%5E3%28pN_2%29%7D%7BpNH_3%7D%20%7D%20%5C%5CpNH_3%20%3D%20%5Csqrt%7B%5Cfrac%7B%280.15%29%5E3%280.10%29%7D%7B1.5%20%5Ctimes%2010%5E3%7D%20%7D%20%5C%5C%3D4.74%20%5Ctimes%2010%5E-%5E4atm)
= 4.7 × 10⁻⁴atm
Energy is stored in chemical bonds during photosynthesis.
During photosynthesis, the radiant energy from the sun is converted to chemical energy in carbohydrates.
Inorganic materials in the form of carbon dioxide and oxygen combine to form carbohydrates in the presence of radiant energy according to the equation below:

The energy is thus, stored in chemical bonds in the carbohydrate and this is what is oxidized during respiration to release the locked energy.
More on photosynthesis can be found here: brainly.com/question/1388366
if 105 grams burns completely
therefore
105 ×22.4/48=49