Answer:
Explanation:
If the energy of an atom is increased, an electron in the atom gets excited. To go back to its ground state, the electron releases energy. The energy of the light released when an electron drops in energy level is the same as the difference in energy between the two levels.
Viewed simply, electrons are arranged in shells around an atom’s nucleus. Electrons closest to the nucleus will have the lowest energy. Electrons further away from the nucleus will have higher energy. An atom’s electron shell can accommodate 2n2 electrons (where n is the shell level).
In a more realistic model, electrons move in atomic orbitals, or subshells. There are four different orbital shapes: s, p, d, and f. Within each shell, the s subshell is at a lower energy than the p. An orbital diagram is used to determine an atom’s electron configuration.
There are guidelines for determining the electron configuration of an atom. An electron will move to the orbital with lowest energy. Each orbital can hold only one electron pair. Electrons will separate as much as possible within a shell.
Answer:
13.3g
Explanation:
3.04g + 4.134g + 6.1g = 13.274g
=13.3g
When expressing the correct number of significant figures in addition, you go to the last common decimal place. In this case that is 0.1 because all the numbers have this decimal place.
This is because your measurement can only be as precise as the least precise measurement. The more decimal places in the measurement, the more precise the measurement.
Answer:
Gains Kinetic Energy
Explanation:
Kinetic energy (KE) is the energy inserted on the object in motion. Having gained this energy enerted upon, the body maintains this kinetic energy unless its speed changes.
Answer:
--
--
--Br--
Explanation:
The steps involved in predicting the structure of the alkyl bromide compound are outlined below.
1) An examination of the product shows that the product could only be formed by a substitution reaction.
2) The structure of the alkyl bromide compound can be then predicted by replacing the methoxide group in the product after the substitution of bromine atom. This is because the methoxide ion acts as a strong nucleophile.
Therefore, by consideration the reaction mechanisms of reactions 1 and 2, it can be predicted that the structure of the alkyl bromide compound is
--
--
--Br--
. A pictorial diagram of the alkyl bromide compound is also attached.