4. I meter
5. 0.453 kilometers
6. 89.84700 microns
7. Yo momma
The pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
<h3>What is pH? </h3>
pH is defined as the concentration of the hydrogen bond which is released or gained by the species in the solution which depicts the acidity and basicity of the solution.
<h3>What is pOH? </h3>
pOH is defined as the concentration of the hydronium ion present in solution.
pOH value is inversely proportional to the value of pH.
pH value increases, pOH value decreases and vice versa.
Given,
Total H+ ions = 2.95 ×10^(-12)M
<h3>Calculation of pH</h3>
pH = -log[H+]
By substituting the value of H+ ion in given equation
= log(2.95× 10^(-12) )
= 13.5
Thus we find that the pH of a solution at 25. 0 °C that contains 2. 95 × 10^-12 m hydronium ions is 13.5.
learn more about pH:
brainly.com/question/12942138
#SPJ4
Whether water is frozen, in a gaseous state, or is a liquid, it is still H2O. So the chemical composition does stay the same.
Answer:
ΔH°_rxn = -195.9 kJ·mol⁻¹
Explanation:
4NH₃(g) + 3O₂(g) ⟶ 2N₂(g) +6H₂O(g)
ΔH°_f/(kJ·mol⁻¹): -45.9 0 0 -241.8
The formula relating ΔH°_rxn and enthalpies of formation (ΔH°_f) is
ΔH°_rxn = ΣΔH°_f(products) – ΣΔH°_f(reactants)
ΣΔH°_f(products) = -6(241.8) = -1450.8 kJ
ΣΔH°_f(reactants) = -4(45.9) = -183.6 kJ
ΔH°_rxn = (-1450.8 + 183.6) kJ = -1267.2 kJ