Ammonia is the most basic and has the highest OH- concentration since it has the highest pH.
Explanation:
Gases: more space therefore meaning that particles in the gas have the highest Kinetic energy therefore moving faster all around.
Liquid: they have more kinetic energy than liquid,but they have some space for movement so they collide each other quicker due to lack of space.
solids: They have least kinetic energy as they have no space at all meaning particles can move around and only just vibrate against each other.
This is one of the ideal gas laws. Presumably the pressure remains the same so it is not part of the givens.
Formula
V / T = V1 / T1
Givens
- V = 56.05 mL
- T = 315.1 degrees Kelvin
- V1 = x
- T1 = 380.5 degrees Kelvin
Solution
56.05/315.1 = x/380.5 Simplify the left.
0.1779 = x / 380.5 Multiply both sides by 380.5
0.1779 * 380.5 = 380.5x/380.5
67.68 mL = x This is your answer
A 1.775g sample mixture of KHCO₃ is decomposed by heating. if the mass loss is 0.275g, the mass percentage of KHCO₃ is 70.4%.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction can be defined as a chemical reaction in which one reactant breaks down into two or more products.
- Step 1: Write the balanced equation for the decomposition of KHCO₃.
2 KHCO₃(s) → K₂CO₃(s) + CO₂(g) + H₂O(l)
The mass loss of 0.275 g is due to the gaseous CO₂ that escapes the sample.
- Step 2: Calculate the mass of KHCO₃ that formed 0.275 g of CO₂.
In the balanced equation, the mass ratio of KHCO₃ to CO₂ is 200.24:44.01.
0.275 g CO₂ × 200.24 g KHCO₃/44.01 g CO₂ = 1.25 g KHCO₃
- Step 3: Calculate the mass percentage of KHCO₃ in the sample.
There are 1.25 g of KHCO₃ in the 1.775 g sample.
%KHCO₃ = 1.25 g/1.775 g × 100% = 70.4%
A 1.775g sample mixture of KHCO₃ is decomposed by heating. if the mass loss is 0.275g, the mass percentage of KHCO₃ is 70.4%.
Learn more about decomposition reactions here: brainly.com/question/14219426